The field of Machine Learning is doing pretty well at quantifying its goals and progress, yet Neuroscience is lagging behind in that regard — current claims are often qualitative and not rigorously compared with other models across a wider spectrum of tasks.
Brain-Score is our attempt to speed up progress in Neuroscience by providing a platform where models and data can compete against each other: https://www.biorxiv.org/content/early/2018/09/05/407007
Deep neural networks trained on ImageNet classification do the best on our current set of benchmarks and there is a lot of criticism about the mis-alignment between these networks and the primate ventral stream: mapping between the many layers and brain regions is unclear, the models are too large and are just static feed-forward processors.
We thus created a more brain-like model, “CORnet”, which does well on Brain-Score with only four areas and recurrent processing: https://www.biorxiv.org/content/early/2018/09/04/408385
EDIT: Science Magazine wrote a news piece about the use of deep neural networks as models of the brain with the final paragraphs devoted to Brain-Score: http://sciencemag.org/news/2018/09/smarter-ais-could-help-us-understand-how-our-brains-interpret-world