TUTI

FAKULTAT FUR INFORMATIK

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Information Systems

Scalable Database Concurrency Control
using Transactional Memory

Martin Schrimpf

0

FAKULTAT FUR INFORMATIK

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Information Systems

Skalierbare
Datenbanknebenlaufigkeitskontrolle mittels
transaktionalem Speicher

Scalable Database Concurrency Control
using Transactional Memory

Author: Martin Schrimpf
Supervisor: Univ.-Prof. Alfons Kemper, Ph.D.
Advisor: Prof. Uwe R6hm, Ph.D.

Submission Date: 15.07.2014

I confirm that this bachelor’s thesis is my own work and I have documented all sources

and material used.

Sydney, 25" of July 2014 MS

Place and Date Martin Schrimpf

martin.schrimpf@outlook.com
Typewritten text
MS

Acknowledgements

I want to express my great appreciation to Professor U. Roehm for providing me with continuous
support throughout the whole project - the collegial atmosphere was a fantastic experience. My
grateful thanks are extended to Professor A. Kemper for making it possible to work on this thesis
in Sydney and for providing us with the necessary hardware. Also thank you Dr. V. Leis for the
useful tips and the help related to the servers. Moreover, I also want to thank Professor A. Fekete

and Dr. V. Gramoli for welcoming me in Sydney.

Finally, I wish to thank my dad for his support and encouragement throughout my study despite

the distance of over 16 thousand kilometres.

iii

Abstract

Intel recently made available the optimistic synchronization technique Hardware Transactional
Memory (HTM) in their mainstream Haswell processor microarchitecture.

The first part of this work evaluates the core performance characteristics of the two programming
interfaces within Intel’s Transactional Synchronization Extensions (TSX), Hardware Lock Elision
(HLE) and Restricted Transactional Memory (RTM). Therein, a scope of application is defined
regarding inter alia the transaction size which is limited to the L1 DCache or even less with wrongly
aligned data due to cache associativity, the transaction duration restricted by Hardware interrupts
and a limit to the nesting of transactions. By comparing common data structures and analyzing
the behavior of HTM using hardware counters, the Hashmap is identified as a suitable structure
with a 134% speedup compared to classical POSIX mutexes.

In the second part, several latching mechanisms of MySQL InnoDB’s Concurrency Control are
selected and modified with different implementations of HT'M to achieve increased scalability. We
find that it does not suffice to apply HTM naively to all mutex calls by using either HLE prefixes or
an HTM-enabled glibc. Furthermore, many transactional cycles often come at the price of frequent
aborted cycles which inhibits performance increases when measuring MySQL with the tx-bench

and too many aborts can even decrease the throughput to 29% of the unmodified version.

Contents

1 Introduction

2 Intel TSX
2.1 Restricted Transactional Memory oo
2.2 Hardware Lock Elision
2.3 Linux perf Tool e
2.3.1 Preliminaries e
2.3.2 Basicprofiling
2.3.3 Event profiling
2.3.4 Recording and reporting profiles oo
2.4 Micro-Usage of HLE
2.4.1 Lock variable type e
2.4.2 HLE function call
2.4.3 Locking algorithm
2.4.4 TAS implementation
2.4.5 Resulting combined function oo
3 Evaluation of Core Performance Characteristics
3.1 Necessity to keep the mutex in the read-set
3.2 Scope of application L e
3.2.1 Transaction size e e
3.2.2 Cache Associativity
3.2.3 Transaction duration
3.2.4 Transaction Nesting
3.2.5 Overhead
3.3 Isolated use cases e e e
3.3.1 Closed banking system
3.3.2 Shared counter
3.3.3 Doubly linked List
3.3.4 Hashmap e

10
10
10
12
14
15
16
18
19
22
23

3.4 Linking with a HTM-enabled glibc 51

3.4.1 Installation 51

342 Usageo 52

4 Database Concurrency Control using Intel TSX 55
4.1 InnoDB internals 57
4.1.1 Multi-granularity lockingo 58

4.1.2 Transaction locks 58

4.1.3 Function hierarchy 59

4.2 Modifications to apply HTM 62
4.2.1 Targeted functions L 63

4.2.2 RTM implementation with fallback path 63

4.2.3 Relinking with the HTM-enabled glibc 66

5 Evaluation of HTM in MySQL/InnoDB 67
5.1 MySQL configuration 67
5.2 Benchmarking with the txbench 00000 68
5.3 Comparison and analysis of the applied changes 69

6 Conclusion 77
6.1 Conclusions on Intel TSX and its application in a Database Concurrency Control . . 77
6.2 Lessons learned L L e 78
Appendix A Environment 81
Appendix B Technical pitfalls 85
Appendix C Omitted Benchmarks and figures 87
Appendix D Open Questions 101

Bibliography 107

CHAPTER 1

Introduction

“The future is parallel”. This statement by Flynn and Rudd [1] in the year 1996 was a broad
prediction for what would happen in the next few years in the computer industry. At the present
day, Intel has decided to cancel its 4 GHz single-core developments and embrace multicore CPUs [2]
which is a movement that holds true for the other major chip makers such as AMD and IBM as well
(3], [4]. Earlier, computing performance has mostly been driven by decreasing the size of chips while
increasing the number of transistors. “In accordance with Moore’s law, this has caused chip speeds
to rise and prices to drop” [3]. Due to physical limitations in the semiconductor technology, it is
difficult however to continue shrinking the transistors [4], [5]. Marc Tremblay, former chief architect
for Sun Microsystems once noted that “We could build a slightly faster chip, but it would cost
twice the die area! while gaining only a 20 percent speed increase” [3]. Hence, it seems reasonable
to “build chips with multiple cooler-running, more energy-efficient processing cores instead of one
increasingly powerful core” although each single core is often not as powerful as a single-core model,
their ability to handle work in parallel leads to an increased overall performance [3], [4], [6].

To parallelize a program, imperative languages usually allow the developer to start threads for
concurrent execution. However, examples such as the banking problem illustrate issues that arise
with parallel programs: consider a banking system where the two threads Alice and Bob share the
same account with an initial balance of 1000$ and both want to deposit money. Firstly, both threads
read the value of the account and store it in a local variable each. Then Alice makes a deposit of
1008, thus she adds this value to the stored value of the account and then writes the result back
to the account that will then show a value of 1100$. Bob wants to deposit 50$ so he executes the
same steps: add the deposit to the stored value of the account (1000$) and set the account’s value
to the result of 1050%. This leads to the loss of the 100$ that Alice payed in initially which has its
cause in the lack of communication between the two parties (threads).

To solve this problem, one of the first papers regarding critical sections has been published in 1965 by

Dijkstra [7]. He proposed a mutual exclusion algorithm that allowed only a single computer to be in

!semiconductor block on which an integrated circuit is fabricated

2 CHAPTER 1. INTRODUCTION

the critical section at a time which set the foundation for current mutexes that are e.g. implemented
in the POSIX? standard. Other techniques use atomic instructions such as compare and swap or
test and set [8] that guarantee for only one thread executing the atomic instruction. Using these
atomic instructions, lock-free data structures can be implemented that allow to parallelize processes
without the necessity to lock critical regions [9]. Java has its synchronized methods and monitors
that allow for a high-level protection of sections that the Java Virtual Machine will then carry out

in a specific implementation hidden from the programmer [10].

A different approach is transactional memory that allows the programmer to define critical regions
without the requirement of implementing a complex locking system while maintaining or outper-
forming the performance of other locking techniques [11], [12].

So far, transactional memory has mostly been implemented in software due to the lack of main-
stream hardware support. Yet, Software Transactional Memory (STM) has shown convincing per-
formance results [13]-[15]. With the Intel Transactional Synchronization Extensions in the recently
released Haswell processor, Hardware Transactional Memory (HTM) has become realistically avail-
able [16]—-[18]. First analyses of this technique have shown how HTM can increase the performance
of an application: Yoo, Hughes, Lai, et al. [17] have achieved a 1.4x speedup with high-performance
computing workloads, Leis, Kemper, and Neumann [19] implemented it in main-memory databases
and obtained nearly lock-free processing performance. Matveev and Shavit [20] implemented a hy-
brid algorithm with partly short hardware transactional paths where the HTM implementation
of a Red-Black tree gained an approximate 10 times speedup compared to TL2 STM?. Log-based
Transactional Memory has been proposed by Moore, Bobba, Moravan, et al. [22] which addresses
the problem of many aborts inside transactions [23] and achieved a 4 times speedup compared to the
default locks in the SPLASH-2 benchmark®. Similarly, Levy [24] addressed performance problems
in the HLE implementation of HT'M caused by transactional aborts by serializing only conflicting
threads and improved the performance on STAMP?® by 3.5 times compared to default Haswell HLE.
Finally, Kleen et al. [25] implemented a glibc version using HTM so that existing applications can

be re-linked to support HI'M without any change in the source-code or the need to re-compile.

This work describes HTM in the Intel Transactional Synchronization Extensions and its usage
in two different programming interfaces as well as the useful Linux profiling tool perf. We then
evaluate several micro benchmarks to find the application area, followed by isolated use cases of
data structures that show how data layout affects the performance. Ultimately, we choose the
Concurrency Control in MySQL InnoDB for more complex benchmarks, reimplement the internal

locking structures using HTM and evaluate the results with regard to profiling results.

2Portable Operating System Interface: defines the interface between operating systems and applications

3TL2: Software Transactional Memory algorithm based on a combination of commit-time locking and a global
version-clock validation technique [21]

4SPLASH-2: a benchmark suite for parallel applications

SSTAMP: Stanford Transactional Applications for Multi-Processing, a benchmark suite designed for Transactional
Memory research

CHAPTER 2

Intel TSX

Since Transactional Memory allows for a dynamic determination whether critical sections of threads
need to be serialized or not, it supposedly allows for the simplicity of coarse-grain locking at the
performance of fine-grain locking [17], [26], [27]. In terms of implementation, the realization in
hardware has some benefits over a software approach: the imposed overhead is much lower which
in turn leads to a better performance, concurrency works at cache line granularity instead of object
granularity [28], [29] and having a mainstream implementation in the Intel Haswell processor gives

some sort of guarantee that HTM will stay around for a while [18].

With the new Haswell generation, the processor keeps track of the data that is accessed, i.e. read or
modified, in critical regions [30], [31]. Such an execution of a critical region is also referred to as a
transaction which implies the same as a database transaction where either everything is committed
or everything fails [32, p. 321]. A transaction can thus be defined as “a sequence of operations
that perform a single logical function” [33]. All updates inside a transaction are buffered by the
hardware and will either be atomically committed at a later point or aborted [27] whereas during
the execution, the hardware does not make any updates visible to other threads [34]. If conflicts
occur within a transaction because other threads execute the same or a different transaction that
accesses the same data, all but one transactions must be aborted and only a single transaction
may commit. Ideally, this allows multiple threads to execute in parallel when no communication is
required instead of executing serialized with a lock variable as shown in Figure 2.1.

To implement such a behavior, the existing cache and memory coherency protocol MESIF [36] can
be utilized where the processor already keeps track of cache line conflicts between multiple cores !
[28], [29, p. 3]. A data conflict occurs if either one thread modifies a cache line that another thread
has accessed (read or write) or vice-versa if a thread accesses a cache line that another thread
has modified [24], [29]. The thread that detects the conflict must then transactionally abort which

leads to the rollback of the transaction [31]. A rollback can be expensive and issues with too many

! Although Intel did not make a definite statement over how HTM is implemented so far, these assumptions are
quite straight-forward and very likely to be true [29, p. 3]

4 CHAPTER 2. INTEL TSX

TO T1 T2 T3 TO T1 T2 T3

\
\
|
|
Figure 2.1: Serial (left) and transactional execution (right) [35]

rollbacks in HTM have been identified [22], [24]. Furthermore, cache lines that are read but not
written in multiple transactions do not present a data conflict since nothing has been modified.
Therefore, the processor keeps track of the 64 Byte cache lines in two separate sets, one for modified
data and one for data that has only been read. This is done by monitoring the addresses of data
inside a transactional region and is generally limited to the first level data cache [18], [29]-[31],
[34], [37] which imposes a resource limit that STM does not have [28]. Since data might be more
fine-granular than a cache line or overlap multiple cache lines, false conflicts can happen: if, for
instance, two byte-values are stored in the same cache line and two transactions each modify a
different byte-value, the processor recognizes this as an abort because it only knows about the
cache line but not about the actual values inside it [37]. This problem can be solved partially by
padding data - in our example we would put the byte-values inside a class (object-oriented) or a
struct (C) that holds 63 more bytes and hence sums up to a total of 64 byte together with the
actual value. Although instances of the modified structure are then 64 byte big, they also need to
be aligned to begin at an address that is a multiple of the size of a cache line because otherwise the
instance could just start in the middle of a cache line and thus overlap with other instances again.
Moreover, with Hyper-Threading, the L1 cache is shared between two threads on the same core
and an abort in one of the two threads can thus lead to an eviction in the other thread on the same
physical processor [31, p. 12-2].

Besides data conflicts, there are several other possibilities of why an abort can occur: any system or
I/O calls (e.g. PAUSE or CPUID), context switches, overflows and somewhat random interrupts will
lead to a transactional abort [27], [29], [34], [38]. Aborts also occur when (de-) allocating memory
with new/delete and malloc/free 2.

However, if no conflicts occur, critical sections can be executed concurrently where a mutex-based

system might not allow such behavior due to a too coarse-grained lock.

2 Also see Appendix Section C.1 for an evaluation of the (de-) allocation of memory

2.1. RESTRICTED TRANSACTIONAL MEMORY 5

To use HTM, the Intel Transactional Synchronization Extensions provide two software interfaces

to mark code regions for transaction execution: Hardware Lock Elision (HLE) adds instruction

prefixes to existing lock calls whereas Restricted Transactional Memory (RTM) is a new instruction

set interface [18], [29].

2.1 Restricted Transactional Memory

The RTM instruction set interface provides four basic operations [16], [18], [27], [29]:

_ xbegin begins an elided transaction

__xend ends an elided transaction

_ xtest tests whether the code is executed transactionally

__xabort aborts an elided transaction

To elide a critical region with RTM, we mark its beginning _xbegin. This function returns an

integer code signaling the status of the elision - we have only entered an elision if the return value
is equal to _XBEGIN_STARTED. This value can be set to one of the default abort reasons but it
can also be passed via in the argument of the _xabort function [30], [39], [40]. Table 2.1 shows
the meaning of return values as defined in the Intel® C++ Compiler XE 13.1 User and Reference

Guides [30].

EAX register bit

Meaning

QU W N~ O

abort caused by _xabort
transaction may succeed on retry
data conflict

internal buffer overflow

debug breakpoint was hit

abort due to nesting

Table 2.1: Excerpt of RTM codes [30]

Adding to Table 2.1, bits 23:6 are reserved and bits 31:24 represent the _xabort argument. We

further found that an interrupt does not set any bits?, hence the return value for aborts caused by

an interrupt is 0.

Finally, the end of a transaction is marked with _xend as shown in Listing 2.1.

Listing 2.1: RTM control flow

1 1if(_xbegin() == _XBEGIN_STARTED)
2 // perform elided transaction ...
3 _xend();

3The interrupt benchmark can be found in Section 3.2.3

6 CHAPTER 2. INTEL TSX

4 } else { // aborted
5 /* fallback path... =/
6 }

An important aspect to understand here is that the very first call of _xbegin will always return
_XBEGIN_STARTED but if an abort such as data conflicts or an interrupt occurs before the _xend,
the program jumps back to the start of the transaction, _xbegin, which will then return a value
unequal to _XBEGIN_STARTED. The program does not know about this jump however, since all

written variables inside the transaction are aborted [27], [41].

The fallback-path can naively be implemented with a simple retry so that the elision is started
again after it aborted. But because RTM has no forward guarantee (the worst-case of a transaction
that never elides can always happen), one should provide a maximum amount of retries and still
define an alternative fallback path when this maximum has been reached or in the case of little
tests at least output an error message.

With any fallback path, one needs to make sure that it correctly interoperates with any transactional
execution. A simple way to do so when using locks is to put the lock variable in the read-set and
have the fallback write to the lock variable which aborts all transactions [42].

Moreover, generalized lock /unlock methods can be implemented - Listing 2.2 shows the combination
of a lock/unlock function with a retry routine. Therein, the elided path is attempted again if retries
are available and the elision might succeed on a retry which is indicated by a set second bit of the

_xbegin return value.

Listing 2.2: Generalized RTM lock/unlock

1 void rtm_lock () {

2 int failures = 0, max_retries = 123, code;

3 while ((code = _xbegin()) != _XBEGIN_STARTED) {
4 failures++;

5 if((code & 2) == 2 && failures <= max_retries) {
6 _mm_pause () ;

7 } else {

8 /+ alternative fallback path... =*/

9 break;

10 }

11 }

12}

13 void rtm_unlock () {

14 if(_xtest()) { // speculative run

15 _xend();

16 } else {

17 /* alternative unlock path... x/

18 }

19 }

2.2. HARDWARE LOCK ELISION 7

Although generalized methods might be easier to implement at first glance, one needs to keep the
fallback-path in mind that can usually be implemented more efficiently if the specific use-case is
known. Furthermore, the shown implementation is not compatible with mutexes which leads to the

second HTM programming interface: HLE.

2.2 Hardware Lock Elision

Hardware Lock Elision (HLE) can be seen as a subset of RTM where the fallback path uses a lock
[42]. It implicitly provides backwards compatibility with processors that do not support the Intel
TSX and allows to use HTM in applications without changing the program logic [29], [30], [43].

Therefore, HLE introduces two new assembly instruction prefixes [30]:

XACQUIRE used in front of the instruction that acquires the lock protecting a critical section
(marks the beginning of a transaction)

XRELEASE used in front of the instruction that releases the lock protecting the critical section

(marks the end of a transaction)

Thus, the abstract structure of a program with HLE does not differ from the same program without

HLE, the added prefixes present the only difference as shown in Listing 2.3.

Listing 2.3: Pseudo structure of a program using HLE prefixes

1 var mutex;
2 XACQUIRE lock (mutex);
3 execute_critical_section();

4 XRELEASE unlock (mutex) ;

HLE can also be used on a more abstract function-level rather than assembly, more on this topic

can be found in Section 2.4.

When an instruction is prefixed with the processor hint XACQUIRE, the write associated with the
lock operation is elided. Furthermore, instead of adding the mutex address to the write-set of the
transaction, it is added to the read-set and the logical processor 4 enters transactional execution.
Even though the write request has been elided, the eliding processor sees the mutex as occupied
after the instruction whereas other processors will not notice a change in its value, i.e. if it was
available before, it will remain available after the elided instruction. This allows other threads to
enter the same critical region that another processor currently elides. As previously discussed, data
conflicts inside transactions are detected by the processor and will lead to a transactional abort

after which an instruction with an HLE prefix will be executed without elision. Thus, when data

4Logical processors: equal to the number of physical cores or twice their number with Hyper-Threading [44]

8 CHAPTER 2. INTEL TSX

conflicts occur inside the transaction, an instruction with the XACQUIRE prefix will be executed
twice: the first time elided without a write to the mutex and the second time after the abort and
rollback as if the prefix would not be present [30]. If the instruction then writes to the lock variable,
all threads speculating on this mutex will fail because the variable is located in their read-set [27].
An instruction prefixed with XRELEASE usually releases the mutex, thus writes e.g. zero to it. If the
value of the mutex is equal to what it was in the beginning of the transaction, the write request will
be elided again and the mutex address is not added to the write-set. Since an abort will be issued
when the mutex variable is different from zero on release, it is desirable in terms of performance
to immediately abort an operation that does not meet this condition [45]. Finally, the processors
attempts to commit all buffered updates that happened during the transactional execution [27],
[30], [34].

There are some important takeaways here: First of all, HLE is perfectly suited for an existing
application that wants to make use of HT'M since using it only involves prefixing lock instructions
with the according prefixes - if locks are elided, the application becomes more scalable and non
blocking [27]. For instance, Reindeirs [26] provides the example of a Hashmap that is protected by a
global mutex. So far, this would have meant that every operation accessing an item of the Hashmap
has to wait until it is the only operation on the Hashmap even if there are no collisions. With HLE,
such a program could easily be extended to elide the mutex and thus increase the performance
vastly. Figure 2.2 shows the example of HLE read operations on a Hashmap that contains the
first names of some members of the Database Research Group at the University of Sydney. The
names are hashed by the amount of characters. HLE ignores the global mutex and can perform all

operations concurrently since there are no data conflicts.

Global 1 1 tex

KN T

Figure 2.2: HLE operations eliding the global mutex on a Hashmap

Moreover, although a mix of HLE and non-HLE on the same lock variable is possible, it might not
be beneficial since any write to the mutex will abort all transactional executions. Lock variables
should also not be held in the same cache line of 64 Byte because the CPU tracks at exactly this

granularity and thus multiple mutexes in the same cache line can not be tracked separately and

2.2. HARDWARE LOCK ELISION 9

will abort [37]. When the instruction acquiring the mutex is executed in a loop, for instance with
a spin-lock, and the mutex is already occupied by another non-transactional execution, elided and
non-elided writes alternate °.

In comparison with RTM, HLE is easier to implement and with its backwards-compatibility, it is a
good fit for existing applications but it is not as flexible as RTM because the fallback path cannot
be controlled [42].

As indicated at the beginning, HLE is a subset of RTM and by analyzing the control flow, we can
write a naive implementation of a function that test-and-sets a mutex variable with HLE using
RTM instructions. Thus, the HLE TAS function can be written using RTM for instance. TAS (test-
and-set) is a method especially popular in low-level locking and lock-free data structures which sets

a variable to the given value and returns the variable’s previous content.

Algorithm 1 HLE TAS implementation using RTM

1: function TAS__LOCK(mutex)

2. if _xbegin() = XBEGIN_ STARTED then
3 return mutex

4 else

5: return non_ elided tas(mutex)
6: function UNLOCK(mutex)

7 if xtest then

8 if mutex != 0 then

9 _xabort()

10: _ xend()

11: else

12: set mutex to 0

The Algorithm 1 tries to execute an elided transaction using _xbegin. If this is successful, the
value of the mutex is returned, otherwise the result value of the non-elided TAS function is executed.
To unlock the mutex, we test whether the execution is transactional - if the mutex is not equal to
zero therein, the transaction is aborted, otherwise we attempt to commit the transaction. In the
non-transactional case where we used non-elided TAS in the lock function, the mutex has to be set
back to zero.

Note that the value of the mutex will not appear to be set inside the eliding thread with this

version, hence it is not perfectly equal to the actual HLE behavior.

The Lemming Effect We already discussed that when HLE falls back to explicitly acquiring
the lock variable, other threads that elide the same mutex will be aborted. In the following, the
other threads will also fall back to an explicit acquisition of the mutex. This can either fail as well
if the mutex is still occupied and the thread would bounce between eliding the write and explicitly

acquiring the mutex in the follow-up. If any of the explicit writes of all threads is successful, the

5 A more detailed HLE spin-lock explanation can be found in Section 2.4

10 CHAPTER 2. INTEL TSX

execution remains serialized and it can end up in a situation where no elision is successful for a
longer time period [34]. The likelihood for a single thread to acquire the lock variable without
eliding it is simply put 50% as it alternates between elision and no elision. Thus, n threads trying
to acquire the mutex can be seen as picking n balls from an urn that are either white (elision) or
black (explicit write) where the ball is put back after every pick. The likelihood that at least one
mutex is written explicitly is equal to p = 1 — P("all mutexes elided") = 1 — 0.5". To put this into
relation, with n = 2 threads, p is 75%, with 4 threads 93.75% and with 32 threads 99.999999976%,
hence it is extremely likely that the execution will remain serial after an initial abort.

A solution to this issue is presented in Section 2.4.

2.3 Linux perf Tool

perf 6 is a profiling tool for Linux that allows to read and aggregate CPU hardware performance

counters as well as tracepoints, software performance counters and dynamic probes [46].

Hardware performance counters are processor-registers that count certain hardware-events and thus
allow for a low-level performance analysis. An important aspect of these registers is that they do

not slow down the kernel or applications [46].

The measurable hardware events include e.g. the amount of cycles, cache-misses and most im-
portantly Intel TSX events [18, p. 19-2] which will be shown in detail in Section 2.3.3. Another
significant aspect is that the measuring can be performed with a low overhead [47]. The tool pro-
vides multiple commands to analyze an application or the full system such as a live event count,
reporting, etc. [48]. We mainly focus on event counts with perf stat as well as recording and

reporting events with perf record and perf report.

2.3.1 Preliminaries

Since perf is integrated in the Linux kernel, one might need to update to a new kernel. The 3.13
kernel includes all the features whereas the 3.11 and 3.12 kernels only contain a subset [49]. Our
machine runs the Linux version 3.11.0-custom+ which includes a patch for perf by one of

the Intel engineers working on HTM, Andi Kleen.

2.3.2 Basic profiling

As mentioned, perf is capable of collecting and displaying events relevant to Hardware Transactional

Memory. A general overview of elided transactions and transactional cycles can be produced with

Shttps://perf.wiki.kernel.org/index.php/Main_Page

https://perf.wiki.kernel.org/index.php/Main_Page

2.3. LINUX PERF TOOL 11

perf stat and the -T flag. For instance, given a running process with the process id 17358, the

call

perf stat -T -p 17358 sleep 120

collects general indicators such as the amount of executed instructions as well as HTM events over

a timespan of 120 seconds [48]:

Performance counter stats for process id ’17358':

2714,528891 task-clock
3.658.016.172 instructions
3.486.716.405 cycles

119.995.044 cpu/cycles-t/

0 cpu/tx-start/
866.442 cpu/el-start/
84.327.282 cpu/cycles—ct/

0,023 CPUs utilized

1,05 1insns per cycle
1,284 GHz

3,44% transactional cycles
0,000 K/sec

138 cycles / elision

H H H H= H= H=

1,02% aborted cycles

120,001087923 seconds time elapsed

The abbreviations of this output are explained in Table 2.2.

label explanation
cycles All recorded cycles
cycles-t Started transactional cycles
tx-start Started RTM transactions
el-start Started HLE transactions
cycles-ct | Committed transactional cycles

Table 2.2: Explanation of abbreviations in the perf stat output [49]

One also needs to be aware that the comment part on the right is not to be read one to one to the
event part on the left [50]. For instance, the last line on the left gives information about committed
cycles whereas the comment part tells us about the percentage of aborted cycles relative to all
cycles in the program.

Furthermore, the share of aborted cycles is relative to the total cycles and not to the transactional

cycles as one might assume. Thus, the percentage is calculated as follows:

proportion, . (cycles-abort) = proportion,, (cycles-abort) x proportion, (cycles-t)
cycles-t — cycles-ct)
= x proportion, (cycles-t
cycles-t prop tor (Y) (2.1)

cycles-ct

:(1

cycles-t) X proportiong,(cycles-t)

12 CHAPTER 2. INTEL TSX

where proportion,, (cycles-abort) is the proportion of aborted cycles relative to the transactional
cycles and proportion,, () is the proportion of x relative to the total cycles. In our example output,
that is (1 — %) x 3.44% = 1.02%. To calculate the share of aborted cycles relative to the
transactional cycles directly from the given percentages, we solve for proportion,, (cycles-abort):

proportion, (cycles-t)

proportion,, (cycles-abort) = (2.2)

proportion, (cycles-abort)

Calculating proportion,, (cycles-abort) for the example, we receive LO2% — 99.65% which differs

3.44%
cycles-t 1 — 84327282

only slightly from the exact value of 1 — cyclosct 116505041 = 29-72% due to rounding errors

in the percentages.

Unless explicitly mentioned otherwise, this work presents all transactional cycles relative to the
total cycles and the aborted cycles relative to the transactional cycles (instead of total cycles)

which is the more intuitive representation in our opinion.

2.3.3 Event profiling

We can also profile hardware statistics for particular events. This is achieved by using the syntax
perf stat -p PID —e ' {EVENT_CODES}’. A list of TSX performance events can be found
at the Intel® 64 and [A-32 Architectures Software Developer’s Manual under section 19-2, table
19-3. Table 2.3 lists some of the events in the HLE_RETIRED category on page 708 that are of

interest to us.

Event Unmask | Event Mask Mnemonic
Num. Value
C8H 01H HLE_RETIRED.START
C8H 02H HLE_RETIRED.COMMIT
C8H 04H HLE_RETIRED.ABORTED
C8H 08H HLE_RETIRED.ABORTED__MISC1
(memory events, e.g. capacity/conflicts)
C8H 10H HLE RETIRED.ABORTED__MISC2
(uncommon conditions)
C8H 20H HLE_RETIRED.ABORTED_MISC3
(unfriendly instructions or transaction nesting limit overflow
149))
C8H 40H HLE RETIRED.ABORTED MISC4
(incompatible memory type, e.g. HLE executed inside RTM [49)])
C8H S80H HLE_RETIRED.ABORTED__MISC5
(other, e.g. interrupts)

Table 2.3: Excerpt of TSX Performance Events [18, Table 19-3]

The unmask values for RTM are the same whereas the Event Num. is C9H instead of C8H [18,

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf

2.3. LINUX PERF TOOL 13

pp. 707-708].

To profile these events, an example perf call could be the following:

perf stat -p 12345 -e ' {r01C8,r02C8,r04C8}’

The r has to be prefixed whenever events are described by using the unmask value and event num.
One could also refer to the HLE_RETIRED.START event by using el-start, for example, where
we would not need the prefixed r.

To verify that the flags actually represent their descriptions and to illustrate some outputs, we

profile a few simple tests and check the abort reasons.

Data conflicts One of the most common reasons for aborts is obviously a data conflict where
one thread writes data that other threads access (read or write) afterwards, which would lead to
inconsistency. We create such a case where we have two threads that write to the same shared

value, as shown in Listing 2.4.

Listing 2.4: Thread run function that writes to a shared variable

1 int shared;

2 void run(int repeats) {

3 if (_xbegin() == _XBEGIN_STARTED) {
4 shared++;
5 _xend () ;

6 }
7}

The profiled events for this output in Listing 2.5 confirm that the abort reason MISC1 indicates
data conflicts.

We also observe that the sum of the abort reasons miscl and misch is greater than the indicated

aborted transactions and therefore conclude that the hardware events perf displays are not 100%

accurate.

Listing 2.5: perf events for 1,000,000 repeats in two threads of RTM with data conflicts

1 3.156.174 r01C9 (started)

2 1.874.316 r02C9 (committed)
3 1.279.861 r04C9 (aborted)

4 1.279.920 r08C9 (miscl)

5 0 r10C9 (misc2)

6 0 r20C9 (misc3)

7 0 r40C9 (miscié)

8 164 r80C9 (miscbH)

14 CHAPTER 2. INTEL TSX

Unfriendly instructions As previously mentioned, instructions such as system calls cannot be
rolled back and therefore abort immediately. Listing 2.6 shows a setup where the transaction never

succeeds.

Listing 2.6: RTM with unfriendly instructions

1 1if (_xbegin() == _XBEGIN_STARTED) {
2 _mm_pause () ;
3 _xend(); // never succeeds

4 } else {

5 // failure

The according perf results are displayed in Listing 2.7 and confirm that MISC3 is the event for
aborts caused by unfriendly instructions.

Listing 2.7: perf events for 100 loops of RTM with _mm pause () from Listing

1 100 r01C9 (started)

2 0 r02C9 (committed)
3 100 r04C9 (aborted)

4 0 r08C9 (miscl)

5 0 r10C9 (misc2)

6 100 r20C9 (misc3)

7 0 r40C9 (miscd)

8 0 r80C9 (miscbH)

In terms of representativeness on the impact, cycles are more significant: a high abort rate per
transaction is not important as long as the aborted cycles are low [50]. The reasons are based on
transactions consisting of many cycles. So when a transaction aborts, any of its cycles has aborted.
In HLE, that means that all modifications of the previous cycles have to be undone which can cost
a lot if there have been many cycles before. But when one of the first cycles of the transaction
aborts, it is not much effort (or maybe even no effort at all) to undo the changes made. Thus,
cycles and their abort rate represent the performance more precisely and events are mostly useful

to figure out abort causes in our experience.

2.3.4 Recording and reporting profiles

perf also allows to record a profile of a process that can then be used for in-depth analysis in a report.
The perf record call writes samples of the measured activities to a file, typically perf.data.

perf report then uses this file to display all sorts of information.

We use these two commands mostly for assembly-level analysis: perf is capable of displaying hot-

spots of a certain event, such as a transactional abort. The report displays a percentage-weighted

2.4. MICRO-USAGE OF HLE 15

list of functions where the event occurred and allows to see the call-chains of how this function
has been called, again aggregated with their relative shares as well as annotating the assembly
source that is again furnished with percentages representing how relevant an instruction is, i.e.

how often the event occurred in this particular instruction [46]. Figure 2.3 shows such a list of

il d m
- lock rec lock(unsigned

7 o .

Figure 2.3: Exemplary perf report

functions where the samples have been recorded for the hardware event el -abort, i.e. aborted HLE
transactions. In this example, 47.52% of elision aborts occurred in the function lock_rec_lock
and in particular with 97.83% by calls to this method from the sel_set_rec_lock function.

Every of these functions can then be annotated on assembly-level.

2.4 Micro-Usage of HLE

Section 3.3 compares HLE and RTM against POSIX and TAS implementations (which are identical
to the HLE implementation but do not elide). Therefore, this section aims to determine the proper

HLE and thereby also non-elided TAS calls that we will then use in more complex measurements.

Usually, there is more than one solution to a problem and our lock function implementation is not
an exception to this rule. Table 2.4 shows the three categories for our case: HT'M (n/y), modification

and loop-definition.

not-elided " TAS " spin-lock
HLE EXCH spin-read-lock

Table 2.4: Function combinations

To reduce this rather big amount of 23 = 8 possible combinations, we run tests on a simple array of
(padded) mutexes that will be locked /unlocked by different threads which leads to some contention
but not every lock access will be in conflict. The accesses are herein completely random and the
array is shared among all threads. Finally, we choose the best performing non-elided and HLE

implementation that we will then use for following benchmarks.

In terms of implementation, the non-elided operations test_and_set and exchange are implic-

itly provided and HLE’s equivalent functions can be accessed by either providing an additional

16 CHAPTER 2. INTEL TSX

HLE flag in the atomic builtins which are supported in GCC since version 4.8 [27], [43] or by using

the hle-emulation header. Three example calls are shown in Listing 2.8.

Listing 2.8: atomic_ tas and hle__exch call

1 #include "hle-emulation.h" // required for all _ _hle functions

2 type xlock_var;

w

__atomic_test_and_set (lock_var, _ ATOMIC_ACQUIRE) ;
4 _ atomic_test_and_set (lock_var, _ ATOMIC_ACQUIRE | _ ATOMIC_HLE_ACQUIRE) ;
5 __hle_acquire_exchange_n4 (lock_var, 1);

The proper type for the lock variable will be determined in the next section.

2.4.1 Lock variable type

The hle-emulation header offers four different definitions of a lock variable: unsigned char,
unsigned short, unsigned and unsigned long long. The later is only available on 64-
bit systems. To determine which type to use, we run two tests comparing all four types with the
lock function shown in Listing 2.9. In following sections, this function will be further modified to

determine the best implementation but the one shown suffices to decide the best type.

Listing 2.9: HLE lock macro

1 #define __ HLE_LOCK(size, type)\
2 static void hle_lock##size (type xlock) {\
3 while (__hle_acquire_test_and_setf#size (lock, 1)) {\

I

mm_pause () ; \

N

[I
—~

This macro is then expanded by calling it with the four (type, size) pairs: { (unsigned char, 1),
(unsigned short, 2), (unsigned, 4), (unsigned long long, 8)}. Listing 2.10 illus-
trates an example call for the first pair mentioned.

Listing 2.10: uchar macro expansion call

1 __HLE_LOCK (1, unsigned char)

In addition, we also aim for more control about the thread-scheduling and pin every thread to a
core as shown in Listing 2.11.
Since we have 4 cores, this means that in the case of 4 threads each of them will each run on its

own core exclusively and in the case of 16 threads, 4 threads will struggle for the resources on each

core.

2.4. MICRO-USAGE OF HLE 17

Listing 2.11: Thread pinning

1 static int num_cores = sysconf (_SC_NPROCESSORS_ONLN) ;
2 1int stick_this_thread_to_core(int core_id) {

3 cpu_set_t cpuset;

4 CPU_ZERO (&cpuset) ;

5 CPU_SET (core_id, &cpuset);

6

7 pthread_t current_thread = pthread_self();

8 return pthread_setaffinity_np(current_thread, sizeof (cpu_set_t), &cpuset);
9 }

To test these methods, we run a fixed number of threads that each call the lock- and unlock-
function repeatedly. The used mutexes vary from a single mutex up to 100 parallel mutexes, all of
them shared among all threads. They are further padded to fill in a complete cache line of 64 Byte.
Figure 2.4 shows the results of measuring all lock types where four threads continuously perform

the operation of locking and immediately unlocking a random mutex.

= 150 | ZZ3 uchar (1) CJushort(2) MM unsigned (4) =3 ull(8) |
g

= T 1

o

Q

=100 o =
=

o

~

S

) 50 | n
—

<

) e :

1 10 100
Amount of mutexes

Figure 2.4: Comparison of lock variable types for a varying amount of mutexes

Apparently, unsigned with a size of 4 byte is the fastest lock variable type on our machine and we
will use this type for our implementation. We assume that the reason for its performance advantage
has to do with on how many bytes the CPU operates, i.e. in this case on sizes of 4 byte or 32 bit.
Nonetheless, we can show how the share of transactional and aborted cycles is connected to the
performance. In Table 2.5 which displays hardware indicators for a run of 10 mutexes, the type
unsigned has more than twice as many transactional cycles as the other types and by far the
smallest share of aborted cycles which is reflected in a throughput that is 4-5 times higher than the
thoughput of the other types.

18 CHAPTER 2. INTEL TSX

| uchar | ushort | unsigned | ull
24% 22% 54% | 23%
12% 24% 6% | 14%

Transactional cycles
Aborted cycles

Table 2.5: Transactional and aborted cycles for 10 mutexes

2.4.2 HLE function call

Kleen [51] defines two ways to use Hardware Lock Elision on a function-level: adding a HLE-
flag to the __atomic operations or using the hle-emulation header. In terms of the
__atomic_exchange_n function, the only difference in assembler-code with and without the
__ATOMIC_HLE_ACQUIRE flag is a prefixed xacquire.

Listing 2.12: atomic xchg without HLE Listing 2.13: atomic xchg with HLE

__atomic_exchange_n (lock, 1, __atomic_exchange_n(lock, 1,
_ ATOMIC_ACQUIRE) ; _ ATOMIC_ACQUIRE |
_ ATOMIC_HLE_ACQUIRE) ;

xchg eax, DWORD PTR [rdx] xacquire xchg eax, DWORD PTR [rdx]

Furthermore, we compare the assemblies of __atomic_exchange_n with a set HLE-flag against

__hle_acquire_exchange_n4.

Listing 2.14: atomic HLE lock Listing 2.15: emulation HLE lock

__atomic_exchange_n (lock, 1, __hle_acquire_exchange_n4 (lock, 1);
_ ATOMIC_ACQUIRE |
_ ATOMIC_HLE_ACQUIRE) ;

.byte 0xf2 ; ; lock ; xchg eax,
xacquire xchg eax, DWORD PTR [rdx] DWORD PTR [rcx]

The only differences between the code in Listings 2.14 and 2.15 are firstly that xacquire has
been replaced by .byte 0xf2 which is the lower-level representation of xacquire. In addition,
a lock has been added in front of the xchg call. Since the atomic assembly accesses the memory
with [rdx] however, the lock prefix is implicit already [52]. The final notable inequality is that
the hle—emulation assembly places semicolons between the instructions which are interpreted
as newlines [53, p. 3], [54], [55].

We can therefore conclude that the two assemblies are equal and that it does not matter whether
one uses the __atomic functions with a HLE-flag or the __hle functions from the emulation

header.

2.4. MICRO-USAGE OF HLE 19

2.4.3 Locking algorithm

Kleen [51] suggests a method similar to the spin-lock, but with an inner read loop (referenced to
as TAS-T lock (as described later in this section). This section compares it with a naive spin-lock
and explains why the TAS-T lock is suggested.

TAS lock the naive implementation is a trivial busy wait that continuously test-and-sets the
value.

Listing 2.16: Pseudo HLE TAS spin-lock implementation

1 void spin_lock (var lock_var) {
2 while (hle_test_and_set (lock_var, 1))

3 pause () ;

It should be emphasized that HLE will always elide in the first place - even if the lock_var
is set [45]. A set lock variable (i.e. TAS returns 1) indicates two things: first, at least one other
thread is currently executing in a serialized manner, thus without elision, and more importantly
second, if we were to elide, the XRELEASE operation would abort because it attempts to set the
lock variable to zero but it is one (see Section 2.2). Because this transaction will not commit, we

abort it immediately by calling pause and thus "loose" only a few cycles as compared to all cycles
of the transaction.

TAS-T lock similar to the TAS spin-lock in the outer loop but with an inner loop where the

mutex-value is only read instead of continuously writing it (the outer loop performs a Test-And-Set

and the inner loop only Tests).

Listing 2.17: Pseudo HLE TAS-T-lock implementation

1 void tas_t_lock(var lock_var) {

2 while (hle_test_and_set (lock_var, 1)) {
3 var lock_value;

4 do |

5 pause () ;

6 lock_value = get (lock_var);

7 } while(lock_value is set);

An additional test in front of the loop to check if the 1ock_var is free in the first place does not
increase the performance since the first TAS call of the loop tests the value anyways. And even if

the lock variable is set and the transaction has to be aborted, no data has been modified within this

20 CHAPTER 2. INTEL TSX

very short transaction, thus a rollback does not have to undo any changes and it makes more sense
to perform the test-and-set in one operation instead of executing a test-test-and-set algorithm.

The pause is realized by calling _mm_pause (xmmintrin.h) which results in rep nop on an
assembler level. In the case of multiple threads on one core, the pause instruction gives the other
thread a chance to get the CPU and release us from waiting. It also reduces the CPU effort in busy
waiting while taking only 0.4-0.5 clocks according to Intel [56]. HLE or atomic instructions replace

the test_and_set method in specific implementations.

To determine whether a TAS- or TAS-T-spin-lock is the better lock-mechanism for our case, it
does not make a difference for a trivial scenario where 4 threads lock a certain slot out of an array

with 100 mutexes and unlock it again immediately after as shown in Figure 2.5. That is because

08T TAS = I - 199
- = TAS-T
£ 06 |
ae _ B -1 40
q_) R—
.| B _
& 04 |
=
Q
£ i 120
= 0.2@ | f
0 H_”_‘ I I Hl_l I T 0
1,000 5,500 10,000 10 55 100
Locks/unlocks per thread Locks/unlocks per thread

Figure 2.5: Immediate unlock on a size 100 Figure 2.6: Delayed unlock on a single un-
mutex array (4 Threads, lower is better) signed mutex (4 Threads, lower is better)

a blocked mutex is unlocked immediately again, so it is very likely that a subsequent write after
the initial failed write is successful. However, the TAS-T-lock should have an advantage when it
comes to mutexes that are not immediately unlocked. To test this assumption, we reduce the mutex
array size to 1 and put a wait phase between the lock and unlock call, hence force a hotspot that
is unlocked after a small period of time. The wait phase is implemented with the nop_sleep
described in Section 3.2.3 and a parameter of 1,000, hence 1,000 x 750 nops. The observation could
also be made with e.g. the parameter 10 but 1,000 makes the differences very clear. Furthermore,
a value of e.g. 10,000 would already lead to lots of aborts because of too long transaction times.
Thus, 1,000 seems to be a good balance between illustration and representative test results.
Figure 2.6 illustrates that the TAS-T-lock wins over the TAS-lock in such a setup. The reason
is that there is a lower chance of successfully locking the mutex when the mutex is continuously
written in the lock-function. On the other hand, adding a control mechanism to wait for the mutex
to become free after it could not be written (TAS-T-lock), the mutex is only written when it is free
(after the first failed write).

2.4. MICRO-USAGE OF HLE 21

To analyze the improvement of the TAS-T-lock compared to the TAS-spin-lock seen in Figure 2.6,
we use the perf tool once more. Table 2.6 compares hardware transaction indicators for the TAS-
and TAS-T-spin-lock and shows that the abort rates for the TAS-T-lock are minimal in comparison

to the TAS-lock (transactions as well as cycles).

TAS (spin) | TAS-T

Started transactions | 213.187.224 71.899
Aborted transactions 99.99% | 12.15%
cycles 126 x 10° | 59 x 107

Transactional cycles 32.43% | 85.48%
Aborted cycles 40.04% 5.68%
Instructions per cycle 1.64 3.59

Table 2.6: TAS- and TAS-T perf results for delayed unlocks with 4 threads on a single unsigned
mutex (Figure 2.6)

For the following explanation, we have to keep in mind that HLE always elides [45] and every
HLE instruction is executed twice in the case of aborts: once elided and once with an actual write-
attempt to the mutex. Following, the TAS-lock does exactly the same again after a short pause:
a new transaction is started with an elision but since the mutex is still occupied, the transaction
is aborted and we perform the actual TAS call on the mutex. If the non-elided approach fails as
well, we start over. This behavior provokes the start of a lot of transactions since we simply retry
until it works at some point. But because the mutex is non-accessible for some time, a lot of these
transactions (and with them their cycles) are aborted immediately by checking the mutex-value
and aborting if it is set. Thus the high amount of started and aborted transactions and aborted
cycles for the TAS-lock.

Furthermore, because the TAS-lock does not wait for the mutex to become free, there is an approx-
imate 50:50 chance of executing an elided transaction or performing the actual set of the mutex
(it is only an exact 50:50 chance if the time before the HLE TAS call, i.e. the pause instruction
is equal to the time before the non-elided TAS call, i.e. the abort). In contrast, the TAS-T-lock
waits for a free mutex which greatly increases the probability of an elided transaction since it is
the first call after the mutex became free. This difference is observable in Table 2.6 as well: the
TAS-lock has a lower share of transactional cycles than the TAS-T lock (the difference is close to
50%). Ultimately, the total cycles of the TAS-lock are approximately twice as much as compared
to the TAS-T-lock which can be explained by the greater amount of elided transactions in the
TAS-T-lock. Successful elisions mean that no writes to the mutex are involved which are the main
component of this benchmark.

We also note that the TAS-T-spin-lock is able to execute more than twice as much cycles compared
to the TAS-lock. This can be explained by instruction prefetching: every jump invalidates the next
prefetched cache-line [57] and it has to be reloaded. For the TAS-spin-lock, this is expensive because
the complete TAS function has to be loaded into cache again whereas the TAS-T-lock only has to

reload a single pause instruction.

22 CHAPTER 2. INTEL TSX

The measurements in Figure 2.5 and 2.6 have shown that the TAS-T-lock is vastly faster than
the TAS-spin-lock in a scenario where the lock is not immediately unlocked and that it is not

slower even in a TAS-spin-lock friendly scenario. Hence, we use the TAS-T spin-lock for future

measurements.

2.4.4 TAS implementation

The TAS operation can also be implemented by using an exchange (EXCH) instruction which

exchanges value m (typically the lock mutex) with another value v and returns the previous value
of m.

Listing 2.18: Pseudocode TAS implementation

1 void test_and_set (var m, var v) {

2 var prev_m = m;
3 m = v;
4 return prev_m;

When comparing the example EXCH implementation in Listing 2.18, we observe that it is al-
most completely similar to the TAS implementation - in fact the hle—emulation header defines
the _ hle_acquire_ test_and_set-functions as an exchange operation with an additional

comparison of equality to one (see Listing 2.19).

Listing 2.19: hle_ test_ and_ set implementation

1 f#define __ HLE_EXCHANGE (type, prefix, asm_prefix, size)
2 int __hle_##prefix##_test_and_set##fsize (type *ptr)
3

4 return __hle_##prefix##_exchange_n##size (ptr, 1) ==

~ - -

’

We suspect that the non-elided __atomic_test_and_set operation is implemented similarly
and both test_and_set functions can therefore be simplified to an exchange operation instead.
This is safe to do because an expression if (a) where a is a numeric value will only evaluate to
false when a is zero which makes the additional comparison to one redundant.

To verify this assumption, we compare the performances of TAS and EXCH TAS-T-locks on an
unsigned array size 100.

Figure 2.7 illustrates that there is no noticeable difference between TAS and EXCH for neither HLE
nor non-elided calls. Thus, we stick with the EXCH lock and ignore TAS from now on. We also see

a first tendency of HLE outperforming non-elided TAS as it is e.g. two times faster for 10* repeats.

2.4. MICRO-USAGE OF HLE 23

1.5+ TAS =177 .
. zzm EXCH g7
El HLE TAS 1
~ 1| |CZHLE EXCH i |
3 A e
g 7
= 7
Y 7
£ 051 |
E -7

‘L N | NN
1,000 5,500
Locks/unlocks per thread

Figure 2.7: TAS-T-locks using TAS and EXCH on an unsigned array of size 100

2.4.5 Resulting combined function

Bringing all evaluations together, we use HLE and non-elided TAS implementations of a lock

function that:
1. operates on a lock variable of type unsigned
2. is called via the hle—emulation header (in the case of HLE)
3. uses a TAS-T-lock with an outer TAS-loop and an inner read-only loop
4. writes to the lock variable using exchange

The implementation of this HLE function in C++ is shown in Listing 2.20.

Listing 2.20: Implementation of the final HLE function []

1 void hle_lock (unsigned =*lock) {

2 while (__hle_acquire_exchange_n4 (lock, 1)) {

3 unsigned val;

4 do { /+ Wait for lock to become free again before retrying. =/
5 _mm_pause(); /* Abort speculation */

6 __atomic_load(lock, &val, __ ATOMIC_CONSUME) ;

7 } while (val == 1);

9 }
10 void hle_unlock (unsigned =lock) {

11 __hle_release_clear4d (lock);

CHAPTER 3

Evaluation of Core Performance Characteristics

This chapter deals with the scope and the environment in that HTM is useful and therein also defines
its boundaries. Furthermore, the performance of certain data structures with HT'M is analyzed and
we identify the best-suited cases for this technique.

3.1 Necessity to keep the mutex in the read-set

One thought that came to our mind in the development of this work is "why does the mutex even
have to be in the read-set?" The idea behind this is that even if there are two different locking
systems in place, e.g. a non-elided TAS and the new RTM approach, all conflicts are due to data -
thus, why should HTM care about the mutex if only data matters? Hence, a function that forgets

about the mutex can be written using RTM where we simply retry the locking until it succeeds.

Listing 3.1: RTM locking without loading the mutex in the read-set

1 void rtm_lock (typex mutex) {

2 int code;

3 while ((code = _xbegin()) != _XBEGIN_STARTED) {
4 _mm_pause () ;

5 }

6 }

However, running applications with mixed non-elided TAS locks and this modified version that
ignores the mutex but operates on the same mutex as the TAS lock leads to inconsistency and
we conclude that the mutex must be kept in the read-set. A definite reason for this can not be
defined due to lack of open documentation but the assumption is that only one thread recognizes
data conflicts and then aborts all other threads that keep the mutex in their read-set (which they
always do with HLE). Hence, if the thread recognizing the data conflict runs a non-elided TAS lock

26 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

in the example, a different thread that runs the modified version would not be informed about the
conflict and carry on with the elided transaction, thus not providing any concurrency guarantees

anymore.

3.2 Scope of application

With HTM operating on the L1 cache only and being aborted by a lot of reasons, some of which
occur randomly (e.g. interrupt) [18], [19], it is clear that there are limitations other than "real"
data conflicts to this technology. This section goes into detail about the size of a transaction, its
duration and the nesting of HTM instructions. It does not elaborate on aborts that either occur

all of the time or not all, such as issuing system calls or other unfriendly instructions [58].

All benchmarks in this section are run in a single thread since we are interested in isolating single
abort reasons.

3.2.1 Transaction size

The transaction size of a hardware transaction is limited by the size of the L1 cache which is 64
KB per core in our case. However, the cache is equally split into instruction and data cache, thus
the effective cache size for data is 32 KB (see Chapter A). Furthermore, the associativity of the

cache sometimes decreases the effective cache even further as shown in Section 3.2.2.

For our benchmark, we use a unsigned char array because it offers fine granularity in terms of
its size in memory (sizeof (unsigned char) = 1 Byte). Every loop accesses all elements of
the array from 0 to array size-1 with either a write- or a read-access. We then increase the

size of the array and measure the aborts.

Aside from distinguishing between read and write, we also use both initialized and uninitialized
arrays because our tests showed differences therein. An initialized array is defined as an array whose

values are set to any value. For instance, the array a in Listing 3.2 is initialized.

Listing 3.2: Initializing an array

1 unsigned char a[l0];
2 for(int 1=0; i<10; i++)

3 ali] = 0;

In contrast, an uninitialized array has just been allocated but its values have not manually been

set yet (however, the values are deemed to be 0 by definition).

3.2. SCOPE OF APPLICATION 27

Write-only

To begin with, we use a setup where we only write to the array. This is similar to the setup of Leis,

Kemper, and Neumann [19, p. 5] except that we access the array sequentially instead of randomly.

I : e B—F—5 & 5 —
1001 T hitialized /

80 —=—uninitialized |
X
% 60 .
—
o
E 40 |
=
=90 y

0 5 10 15 20 25 30 35 40
Transaction size (KB)

Figure 3.1: Sequential write access on a uchar-array

Figure 3.1 confirms that write-sets exceeding the size of the L1 DCache of 32 KB [31, p. 12.2] lead
to an abort all of the times. We can conclude that the more data inside a transaction is modified,

the more aborts occur. Writing data bigger than the L1 DCache size (32 KB) always aborts.

It is also shown that uninitialized data is more likely to abort. The reason for that is that uninitial-
ized memory only exists virtually in the virtual memory page table but not in main memory. When
it is accessed and the page table entry indicates that it is currently not in real memory, a page fault
exception is raised which then leads to the initialization of the page [18, p. 4-44]. This hardware
interrupt causes the transaction to abort, resulting in the increased abort rate of the uninitialized

array in Figure 3.1.

By profiling this benchmark with perf (Listing 3.3), we see that a capacity conflict is represented
in the same way as a data conflict, namely by the event MISC1.

Listing 3.3: perf events for write access on an array

1 123.532 r01C9 (started)

2 4.847 r02C9 (committed)
3 118.683 r04C9 (aborted)

4 117.959 r08C9 (miscl)

5 0 rl10C9 (misc2)

6 2 r20C9 (misc3)

7 0 r40C9 (miscd)

8 721 r80C9 (miscbH)

28 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

Read-only

For a read-only setup (contrary to write-only in the previous section), the resulting graph differs

in multiple aspects.

100 | .-.,-.::;====
— 80 g
X,
g 60 n
g
EREUS :
= e
&S 20 |- 5@ ;?rf initiali N

]} Lok }5/ E/XS@ —o— initialized
0 be’d $* uninitialized
I

- | | | | | | | I]
0 100 200 300 400 500 600 700 800 900 1,000

Transaction size (KB)

Figure 3.2: Sequential read access

Data that is only read and not written can exceed the L1 data cache size under certain cirumstances:
Intel® 64 and IA-32 Architectures Optimization Reference Manual [31, p. 12.1] states that “An
eviction of a read set address may not always result in an immediate transactional abort since these
lines may be tracked in an implementation-specific second level structure. The architecture however
does not provide any guarantee for buffering and software must not assume any such guarantee”.
This statement is confirmed in Figure 3.2: Non-aborting transactions can be found with transaction
sizes way beyond the L1 DCache of 32 KB. Although the shown graph is cut off at 1000 KB and
it mostly stays at 100% afterwards, there were individual cases of successes beyond this point, e.g.
for a transaction size of 1280 KB. Furthermore, multiple runs of the same test gave different (but
still consistent in their category) results - with the two extremes of 1) the shown graph where
a transaction with a size close to 1 MB still commits in some cases and 2) a result where every
transaction size bigger than 32 KB failed. These results often depend on unexpected parameters
such as the steps at which the array size is increased. As Intel states, software must not assume

that the cache size can actually be exceeded.

The "rise and fall" pattern of the uninitialized data’s failure rate could occur when the architecture
decides to swap the tracking of some lines in the second level structure. According to this expla-
nation, this only happens periodically (thus the spikes) and does not work forever since the failure

rate reaches 100% at around 1 Megabyte of data.

3.2. SCOPE OF APPLICATION 29

3.2.2 Cache Associativity

Since the cache is set-associative, data that is aligned unfavorable can fail although its transaction
size is smaller than the L1 DCache.

The set-associative scheme is often chosen because it compensates the disadvantage of fully asso-
ciative caches where every slot has to be checked in a complex parallel manner and direct-mapped
caches which may cause collisions of addresses to the same slot by being a hybrid of both [59], [60].
To find the set for a memory address, 6 bits of the memory address are used (32 KB cache / 64
Byte cache line size = 512 cache lines, 512 cache lines / 8 slots per set = 64 sets, 1d 64 = 6 bits
to represent each set). One byte can have 64 different offsets which again can be represented using
6 bits [61, pp. 133-136]. Hence, of a 64 bit address A, bits Agz_12 are used for the tag and 6 bits
each for the index (A11_¢) and offset (As_o).

63 (62| ../15/14|13|12(11410| 9 | 8 |7 |6 |5 |43 |2 |1]|O0

e e ¥ = Sy ¥ = e

However, this can also lead to the eviction of cache entries although theoretically all the data
would fit into the cache. If, in our 8-way-set-associative cache, there are variables from more than 8
distinct cache lines mapping to the same cache set, one of the cache lines will no longer fit into the
L1 cache, hence leading to an abort [37], [31, p. 12-2]. This is shown in Figure 3.3 where 8 cache
lines can be stored in Set i but the 9th will lead to the eviction of one of the previous variables. In

HTM this produces an abort because the data does not fit into L1 DCache all at once anymore.

Seti-1 Seti Set i+l

Figure 3.3: Too many variables mapping to the memory same set

We want to illustrate this phenomenon by comparing linear access on an array where only every
nth item is accessed and thus, some elements are skipped. Each array item has the size of a cache
line (64 B) and thereby the last 6 bits of every array element address are the same (but not
necessarily zero). The 6 index-identifying bits are incremented by 1 per element. Hence, the item i
maps to the memory set 1 % 64. When we access every single item, all memory sets are mapped
(0%64=0, 1%64=1, 2%64=2, ...).By increasing the step size to 2, only half the set amount is
actually reached because every second address is skipped (0%64=0, 2%64=2, 4%64=4, ...).

30 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

The following Figure 3.4 illustrates the "loss" of memory sets for a simplified cache with only 8 sets
and an array that is accessed with different step sizes n, i.e. every, every second, every third and so
on item is accessed. All slots that will be reached are marked with a bullet-point and blue colored
slots are the first few items that are not mapped to the same set up to the red slot which marks

the first repetition of a set.

nf0 1 2 3 4 5 06 7 & 9510111213 141516 17 18 19 20 21 22 23 24 25 20 27 28 25 30 31 32 33 34 35 36 37 38 35 40 41
lle|e(w|e|o| o e = (AR B AR BE AR AR AN BE R AN BE AR BE AR AR AR BE AR AR BRE AR BE A AR AN BE AR BN BN AN AIX BN]
2= [] L] [] [] L] [] L] []] []] []] .] .] .]
3. -] [] 1] -] . .] L] - -]

Al = - - - - - - - - -

5 = . - - - - . -

G| ® []] [] . . L]

Figure 3.4: Cache-set mappings for array access of every nth item

It is shown that e.g. for n = 2 all odd memory-sets are omitted. All odd step sizes only repeat
the set after 8 (amount of sets) items. Table 3.1 summarizes the figure by listing after how many

elements an already occupied set is used again.

step size n ‘ 1 ‘
first set-repetition after r elements ‘ 8 ‘

[3|4]5|6]7]|8]9
8

Table 3.1: First set-repetition of skipped array access with 64 sets (Figure 3.4)

213(4|5|6|7|8
418128481

The pattern we can observe is that the first set-repetition r times the step size n is always a multiple

of the amount of sets s. This gives us the following equation

(rxn) mods=0 (3.1)

By finding the smallest r > 0 that matches the equation, we then get the number of sets that data
is mapped to. In other words, we search for the least common multiple (lcm) of n and s and divide
it by n to get the amount of sets that are being used.
1
p = lem(n,5) (3.2)

n

By finding an r for a given n and s, we are able to compare how skipped array access behaves in
comparison to non-skipped access in terms of set-mapping. For instance, if for n’, 7, is half the
value of r,—1, only half of the available sets are reached when we use only every n/th item. Since

this reduces the effective available L1 DCache size, it presents an issue for HLE.

To apply these findings to a cache with 64 sets we apply Equation 3.2 with a changed s which gives

us Table 3.2 (we could also multiply all values from Table 3.1 by & = 8).

After these theoretical calculations, we also want to observe the effects on the abort rate. Therefore,

3.2. SCOPE OF APPLICATION 31

stepsizen | 1| 2| 3| 4] 5] 6] 78] 9
first set-repetition | 64 | 32 | 64 | 16 | 64 | 32 [64 | 8 | 64

Table 3.2: First set-repetition of skipped array access with 64 sets

we use a class CacheLine with a size of 64 Byte.

Listing 3.4: CacheLine class

1 class Cacheline { // sizeof (CacheLine) = 64B
2 unsigned char value; // 1B
3 unsigned char padding[64-1]; // 63B

4 };

Similar to the setup in Section 3.2.1, an array of this class is allocated with a fixed size and its
elements are written to. However, the write-loops only access every nth value where n is the step
size as shown in Listing 3.5.

Listing 3.5: Write loop

// step = {1, 2, 3, 4, 5}
// size goes from 0 to 35 KB

-

M)

w

Cacheline array(size];

4 1int adjusted_size = size * step;
5 for (int i = 0; 1 < adjusted_size; i += step) {
6 arrayl[i] .value = 1;

N}
-

By varying the step size, we are able to create certain environments where only limited cache sets
are reached by the data.

First of all, Figure 3.5 confirms the maximum transaction size for writes of 32 KB that has been
found in Section 3.2.1.

Furthermore, as predicted in Table 3.2, the odd numbers 1, 3, 5 behave exactly the same (therefore
not shown as the values overlap completely) whereas a loop that skips every second element is only
able to access half the transaction size of a loop accessing all array elements. When we skip every
fourth item, only a fourth of the original transaction size can be achieved. Keep in mind that this
does not continue (i.e. even skips can only access % of the original transaction size) since e.g. n = 6
behaves the same as n = 2 and can only access % of the transaction size for n = 1.

Another interesting fact to mention here is that the compilation with the flag —02 instead of —00

increased all transaction sizes by the factor two, n = 1 was capable of 32 KB instead of 16 for
example.

In terms of stack- or heap-allocation with new/malloc, one can argue that since the data is

allocated rather randomly, the differences are not that big. This is shown in Figure 3.6 where data

32 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

—o— step size 1 step size 2 —=— step size 4
100 [T I T T T T I I]
_ 80 i
=X
s 60 i
£
T 401 .
e
<t
20 -
0 \ | e ee e I~ 1 | | | A A M AR | | il
0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Transaction size (KB)
Figure 3.5: Sequential write access on an initialized static array
—— step size 1 step size 2 —=—step size 4 ‘
100 F T T T T T T T [T - \ I]
— 80| s / :
o N - T i
= 60
= P
g
2 40 [B
.8 | -
= a0 ¥ A :
nnnnnnn i) z ‘ L]
0 \ | \ bl

I [| I | | | | | | | | 0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
Transaction size (KB)

Figure 3.6: Sequential write access on an initialized dynamic array

3.2. SCOPE OF APPLICATION 33

is allocated consecutively using new: the worse cases where for instance only every fourth item is
accessed are not as bad anymore but at the same time, the best-case of sequential access without
skips looses out on its maximum transaction size.

We therefore conclude that a program can be optimized by properly aligning memory allocation.

To align data that is sequentially iterated, a potential naive implementation in C++ could be to

use the vector class and reserve a fixed space upfront.

Listing 3.6: Pre-allocating data using vector

1 std::vector<MyClass> aligned_data;

2 aligned_data.reserve (pre_allocation_size);
3 MyClass dummy () ;

4 for(int i=0; i<pre_allocation_size; i++)

5 aligned_data.push_back (dummy) ;

7 1int last_allocation;

9 MyClass x preallocated_new() {

10 int allocation_search_begin = last_allocation;

11 do {

12 last_allocation = (last_allocation + 1) % pre_allocation_size;
13 MyClass x data = &(aligned_data[last_allocation]);
14 if (! data->isUsed()) { // slot is not used

15 data->setUsed (1) ;

16 return dataj;

17 }

18 } while (last_allocation != allocation_search_begin);
19

20 /* no space 1in pre-allocation available «/

21}

However, this approach is neither thread-safe nor would a resize keep the references, pointers
or iterators referring to the elements in the sequence'. A different solution could be to use the

aligned_alloc function?.

3.2.3 Transaction duration

One of the abort reasons being a system interrupt that is randomly issued, Leis, Kemper, and
Neumann [19] found that the longer a transaction needs, the more likely it is to abort. Since system
calls cannot be avoided in practice, even transactions that do not perform any operation other
than waiting face this limitation. This section confirms that finding and also analyzes the standard

deviation of interrupt aborts over time.

lsee http://www.cplusplus.com/reference/vector/vector/reserve/
23ee http://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html

http://www.cplusplus.com/reference/vector/vector/reserve/
http://www.gnu.org/software/libc/manual/html_node/Aligned-Memory-Blocks.html

34 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

To make our transaction as simple as possible, we do not want to compute anything or perform
memory operations. A sleep or wait operation is suited for that. However, we can neither use
usleep nor pause as they perform a system call, which will always fail since a transactional
execution is aborted by a system call [27], [62]. Another approach to keep the processor waiting is
the assembly instruction nop (short for No Operation). This command effectively does nothing at

all by telling the processor do nothing in this cycle [18, p. 898].

Listing 3.7 shows the test setup where the nop instruction is repeatedly called inside the HTM
part. We test how long we can wait after the instruction will no longer succeed.

Listing 3.7: nop measurement

1 1if (_xbegin() == _XBEGIN_STARTED) {
2 for (int i1 = 0; 1 < clocks; i++) {
3 asm volatile("nop");

4 }

5 _xend () ;

6 } else {

7 failures++;
8 }
Transaction duration in milliseconds
0.13 | ‘1.25 . ‘12.5
100 |- .o
£ 0 G
5 60| {ﬁ .
% 40 - }{}%} i
. i
it |
-II-hI-IlII\Ii‘;\;\‘;;;;\;§§\§§\§£§\\\\\ L

0
104 10° 106 107

Transaction duration in cycles

Figure 3.7: Frequency of aborts in relation to transaction durations and their standard deviations

As we can easily observe, failure rates rise with the duration of a transaction and thus conclude

that the more time a transaction needs, the more likely it is to abort.

To convert clock cycles to microseconds, we have to take into account the machine’s CPU clock
speed. On our machine, that is 800 MHz = 800 x10° cycles per second. Thus, the duration of a

cycle is 8001%06 = 1.25ns. To calculate the duration of n cycles in nanoseconds, we simply calculate
the result of the equation n x 1.25ns.

3.2. SCOPE OF APPLICATION 35

Note that after 100,000 cycles (0.125 milliseconds), the failure rate is already above 10% and for
over 13 million clocks (16.25 milliseconds), every single transaction fails. Also be aware that even
though the failure rate for e.g. 100 cycles with below 0.01% is very small, failures still occur and

could lead to a Lemming Effect as described in Section 2.2.

Profiling the benchmark confirms that the aborts indeed only happen due to interrupts as shown
in Listing 3.8.

Listing 3.8: perf events for interrupt aborts

1 52.647 r01C9 (started)

2 39.516 r02C9 (committed)
3 13.130 r04C9 (aborted)

4 0 r08C9 (miscl)

5 0 rl10C9 (misc2)

6 0 r20C9 (misc3)

7 0 r40C9 (miscd)

8 13.129 r80C9 (miscbH)

For future measurements, a wait function without system calls (i.e. similar to usleep) will be
useful. On the basis of the benchmark for transaction duration, this function uses nops for waiting.
Since usleep takes microseconds as an argument, we have to multiply the amount of nops by a
scale-factor which stands for the amount of times we have to loop the nop instruction to reach 1
microsecond. With our CPU clock speed of 800 MHz, we have to wait for 1us x 800MHz = 800
cycles to achieve a wait time of 1 microsecond. Albeit this is a theoretically perfect parameter, the
CPU has a dynamic clock frequency which can lead to deviating results [63]. For instance, calling
our nop_wait function (see Listing 3.9) with the parameter 10,000 and measuring the total time

with gettimeofday can result in different values such as 10,925 or 6612 microseconds.

Listing 3.9: nop sleep

1 void nop_sleep(int microseconds) {

2 for (int 1 = 0; 1 < microseconds * 800; i++) {
3 asm volatile("nop");
4 }

3.2.4 Transaction Nesting

It is possible to have transactions nested inside each other, which is conceptually handled by
flattening the nest into a single transaction. The amount of nesting is however limited [29] - this
section attempts to find the value of this limit, i.e. the maximum amount of nested transactions.

This can be useful when encountering the abort reason Too deep nesting [49].

36 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

We analyze RTM and HLE separately since their underlying behavior differs for this setup.

RTM

We use a simple test setup where we let a function call itself recursively up to a given limit and

then count the failures to determine the maximum amount of nested RTM transactions.

—_
S
e

T
[]
® |
®

|

(@)
]
T
|

Failure rate [%)]

Nesting

Figure 3.8: RTM Aborts per nesting amount

Figure 3.8 shows that nested functions abort as the nesting amount reaches 7, thus RTM Transac-

tions can only be nested up to a maximum of 6 times>.

HLE

In contrast to RTM, HLE functions that lock the same mutex can not be nested because the mutex

appears locked for the thread that occupies it, even if it has been elided.

However, functions locking different HLE mutexes can be nested infinitely often. For this test, we
use an array of padded mutexes where each mutex is padded to the size of a cache line to avoid false
conflicts. Then, a certain amount of mutexes is acquired and by profiling the run, we can determine
the abort arte.

= 100 T T T T T T T T
o 80 e © © o o d ° ° ° ° .
R f
a e 40 [] |
S 0| |
< 0 \ \ L | \ | | \ | | | | | |

1 2 3 4 5 6 7 8 9 10 12 14 16 18 20

Simulateneously used Mutexes

Figure 3.9: Abort rates of nested mutexes

3Intel® 64 and IA-32 Architectures Optimization Reference Manual [31, p. 12-2] states that a nesting limit of 7
is supported wherein they probably start counting with 1 for no nesting

3.2. SCOPE OF APPLICATION 37

Despite the possibility of infinite nesting, it is not useful at all as Figure 3.9 points out. The results of
this benchmark are pretty unsettling because with only two different simultaneously used mutexes,
over a third of the transactions fail already. Hence, global mutexes might be favorable in some
cases. These results are also contrary to the statement that there is a specific limit to the number
of locks that can be elided simultaneously by Kanter [29, p. 2] because the abort rate increases
continuously and not abruptly.

A solution approach to this issue which leads to no more nesting aborts is a modification of the HLE
lock function so that the mutex will only be loaded into the read-set if the execution is not already
transactional. Therefore, we use the _xtest function of the RTM interface to check whether the
current execution is transaction and modify the unlock function to only perform the actual HLE
unlock if the mutex has been written (even if elided, the value appears as set to the eliding thread)

as shown in the implementation in Listing 3.10.

Listing 3.10: Hypothetical workaround for HLE nesting aborts

1 void hle_lock (unsigned * mutex) {

2 if (_xtest() && xmutex != 65535) { // compare with arbitrary number to load into
read-set

3 return;
4 } else {
5 /* actual HLE call... x/

7}

8 void hle_unlock (unsigned % mutex) {

9 if (*mutex == 0) // not set
10 return;
11 /+ actual HLE call... x/

12}

Note that the compiler might optimize the mutex-comparison away if it finds that the value is never
assigned anyway. Moreover, this implementation worked for the micro-benchmark but we did not

conduct any tests in a real application environment.

Internesting

Nesting an HLE transaction inside an RTM transaction and vice-versa leads to a transactional
abort [31, p. 12-19].

3.2.5 Overhead

Hardware Transactional Memory does not come for free and programs run in a single thread without

locks are obviously faster than using HTM. We use a simple setup to estimate the overhead of a

38 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

traditional POSIX mutex lock, an atomic locking technique, HLE and RTM. The benchmark only
calls the respective lock and unlock functions, thus there is no data involved and we focus only the

control mechanism.

150 - 2
8
< 100 |- |
>
© EE o
50 |- %; no sync ?— |
POSIX TAS HLE RTM

Figure 3.10: Overheads with lock-only (lower is better)

Figure 3.10 shows the overhead in cycles* of the different locking techniques compared to no syn-
chonization in a single thread. In this scenario, adding synchronization with a POSIX mutex adds
a 139% overhead, a similar value holds true for HLE (126% overhead), non-elided TAS locks are
slightly better (69% overhead) and RTM (36% overhead) wins this comparison. Although there are
close to zero aborts (except for some interrupts), the additional HTM control mechanisms seem to
add a significant overhead, especially HLE. The cause for this is probably that HLE needs to keep

track of the mutex additionally whereas this RTM implementation does not rely on any mutexes.

Despite the lower overhead of non-elided TAS compared to HLE in this benchmark, the difference
becomes negligible when we are able to elide locks and thereby execute transactions concurrently
instead. Furthermore, due to the broad range of variances, a clear statement can not be made from
this test.

3.3 Isolated use cases

To further determine what scenarios are best-suited for HTM and where one should avoid using
it, we analyze the following data structures each of which targets a different use case: a shared
counter, banking accounts, a doubly linked list and finally a hashmap. These data structures are

generic and commonly used, the two last named inter alia in MySQL.

The critical sections in the data structures in these use cases are protected using different locking

implementations:

4Measuring the same benchmark with execution time instead of cycles produces the same result

3.3. ISOLATED USE CASES 39

POSIX the POSIX standard locks, used by calling the functions pthread_mutex_lock and

pthread_mutex_unlock
TAS a non-elided test-and-set approach with an inner read-only loop as described in Chapter 2.4
HLE the same as the TAS implementation but with HLE prefixes

Elision only an RTM-implementation that ignores the mutex and retries the operation until it
succeeds (this is an extreme that is always optimistic and does not provide a forward-guarantee
- however, since we only face data conflicts in this section, all operations succeed sooner or
later)

The implementation we use to allow for simple testing of different scenarios is a generalized class
that functions as a proxy to all the locking methods. This class provides its own lock variables®
and an enum representing the different locking implementations and an object initialized with this

enum will only lock in the specified manner.

3.3.1 Closed banking system

The analysis in this section simulates a closed bank where the money of an account is deposited,
withdrawn and read. This allows us to verify the correctness of the test-run by summing up the
balances of all accounts and comparing them to the initial total money in the bank. If there
is a difference between the sum of all accounts in the beginning and the end, money has been
lost or created which should be impossible in a closed system, thus it implies a thread-unsafe
implementation. We are however not perfectly strict in the way that the transfer between two
accounts is not a transaction but only the operations on a single account, i.e. between the withdrawal
of one account and the deposit in the second account, the money only exists in a variable and it is
missing in the closed bank system. Hence, the sum only has to be correct after all operations have
finished.

Every account instance is realized using a class which provides thread-safety for the account by
locking before every balance-reading or -modifying operation and unlocking afterwards. The run
function of each thread then selects a random operation, according to the given probabilities: in the
case of update, money is withdrawn from a random account A1 and deposited in another random
account A2. If the chosen operations happens to be read-only, the value of a random account is
read.

Our test is set up with 10000 accounts and a 50/50 probability for read/update.

Since we found the system rand () function to be quite slow when used many times, we use a

5Since we often need different lock variables for different locking implementations, some overhead is introduced -
however, this overhead also ensures that no two locking objects are in the same cache line

40 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

Closed bank: sum = fixed

Account 1 Account ...

1034.50% 1350.00%

Account n

Account 2
846.60%

768.90%

Figure 3.11: Sketch of a closed bank

custom random generator which is shown in Listing 3.116. The random generator is not thread-
safe, thus some conflicts might not be truly random but originate from concurrent access to the
random generator. However, this benchmark mostly aims for prove of correctness and hence we

take some more data conflicts into account.

Listing 3.11: Custom random generator

1 int customrand(int limit) {

2 static long state = 1;

3 state = (state » 32719 + 3) % 32749;
4 int res = state % limit;

5 return res;

6 }

Figure 3.12 shows how Hardware Transactional Memory performs slightly better than non-elided
approaches with POSIX outperforming non-elided TAS a little. The graph remains roughly the
same if the read/update-probabilities are modified.

In addition to the small performance-improvement, the main takeaway from this benchmark is
that HTM is correct and works as a locking technique. The accumulated sum in the closed bank
system remained unchanged for all locking techniques, thus the internal structures of HLE and
RTM function properly.

When it comes to more complex code inside the transaction in later sections (and not just simple

ADD or MOV operations as in this case), we will see a bigger difference between non-HTM and elided
transactions.

50ther random functions have also been tested, see Appendix Section C.6

3.3. ISOLATED USE CASES 41

[\)
)
T

—_
ot
[

Throughput [Kops/ms]
SRS
[[

Figure 3.12: Closed Bank with 10000 accounts, 4 threads and 50% read / 50% update

3.3.2 Shared counter

This section covers the incrementation of a counter that is shared among multiple threads. Obvi-

ously, this is not an HTM-friendly setup because there are lots of conflicts.

The benchmark is inspired by a paper by Porobic, Pandis, Branco, et al. [64] where the latencies of
hardware heterogenities were analyzed with threads that were either spread over multiple sockets
or grouped together on the same socket. Our threads in contrast are always spread over the four
available cores but the counter is varied between shared between all threads and shared between

threads on the same core.

Single counter

To begin with, we introduce a single counter whose critical sections are protected by a mutex that
will be varied. This counter is shared among all threads, each of which is pinned to a core, and

thereby among multiple cores.

With one thread and one counter, there are no data conflicts, thus the very left bar chart shows
overheads of the different locking approaches for incrementing an integer value. This measurement
differs from the benchmark in Figure 3.10 where no data was involved in the way that HT'M is now
clearly worse than non-elided approaches, so apparently it is quite expensive to keep track of elided
values (profiling the output confirms that there are only 0.08% aborted cycles, hence the overhead
does not have its cause in aborts). Nonetheless, it should be emphasized again that this overhead

is beneficial when it comes to multiple threads.

42 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

— 120 & 1 E==POSIX &z TAS = HLE mm RTM (Elision only) i
E w0l P i
5] 7

& 2

2 807 |
o 7

2 00 - |
fb 7

= 40+ |
2

= 20/ i

4 8

Figure 3.13: Single shared counter

Despite slight improvements with multiple threads, the HT'M locks do not perform better than
non-elided locks because of high contention and hence lots of aborts (e.g. 37% aborted cycles for 4
threads with RTM).

Counter per core

The single counter is now extended to four counters (equal to the amount of cores) and each
thread works with one of those counters. The core-locality is guaranteed by pinning the threads
to the corresponding core, so for instance if thread i gets assigned the counter with the number
i % CORES = 2, the thread will also be pinned to core 2.

Unaligned counter per core If we do not take care of the padding and keep the per-core-
counters in the same cache line (i.e. by allocating an array int counters[CORES]), we receive
the graph in Figure 3.14 where HLE and RTM perform extremely bad because the same cache line

is accessed over and over again, hence there are lots of false aborts.

Aligned counter per core In the following, we make sure that the counters are located in
different cache lines by padding them. The results of padded counters are shown in Figure 3.15
where there is an approximate 10x speedup compared to no alignment and the performance from
two to four threads increases instead of remaining roughly the same. However, since the locks are
at the most fine-grained level possible (namely per counter), HTM is still not outperforming the
non-elided locks. Because there are 0% aborted cycles for e.g. RTM and 4 threads, this implies
that HTM is only beneficial when the locks are not perfectly fine-grained. Obviously, implementing
this kind of locks where every mutex protects e.g. a single cache line would be extremely complex

and error-prone to do and moreover one would need an insane amount of mutexes which would

3.3. ISOLATED USE CASES 43

— 60F 7
g
~
wn
&
@ 40f i
=
£
o 20| N
=
o
—
=
0

Threads

Figure 3.14: Unaligned counters per core

then lead to issues with the cache again. Hence, eliding transactions is the easier thing to do and

following this argumentation, also more efficient with more data.

— EPOSIXzZzaTAS HLEMmmMRTM (Elision only)

g 400 & a
= %

9) 7

w300 - |
g Z

2200 [:
o0 #

2 %

e %

= 100 |- 7 2

0 ZIN 77 ‘\.
4
Threads

Figure 3.15: Aligned counters per core with lock per counter

Another interesting observation of the aligned counters is that not only HTM profits from alignment
but also the non-elided TAS. This can be explained with caching, where the counters no longer
have to be reloaded from the shared cache (which is necessary if there is only a single cache line

that contains all the counters and is invalidated on every write of another thread).

Aligned Counter per core with global lock We can also illustrate how HTM is of advantage
when the locks are no longer fine-grained by replacing the lock per counter with a global mutex.

Thereby, each thread has to compete with the other threads even if there are no real conflicts.

Figure 3.16 illustrates how it only makes a slight difference for HLE whether the lock is acquired per
counter or globally because it is elided anyway. However, we can still observe a minor performance

decrease for HLE between fine-grained mutexes and a coarse-grained one, e.g. for 8 threads which

44 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

2 [|
— 00 E=POSIXzz TASHLEmmRTM (Elision only)
E En =3
Z 150 W .
S S
E. NN
= 100 | = |
oF 3
i= 8 T
o0
5
2 50| a
=
H S
0 |—|l7|‘ o
4
Threads

Figure 3.16: Aligned counters per core with global lock

are due to random aborts (interrupts) which have a higher impact with a global mutex. When
a thread in this setup gets aborted, the global mutex is written which aborts all other threads
since they speculate on the same mutex. Hence, we can argue that fine-grained mutexes can still
be beneficial for HLE. In terms of performance, this only holds true as long as more mutexes do
not lead to other interferences with the performance such as an increased read effort because the
mutexes no longer fit in the cache.

Overall, HLE only makes small losses whereas the performance of non-elided approaches like POSIX
and TAS suffers greatly because a coarse-grained mutex is used to protect the critical regions instead

of fine-grained mutexes.

3.3.3 Doubly linked List

A simple data structure that finds its use in a variety of algorithms and inter alia in the MySQL read
view management, is the doubly linked list. This section compares the different locking techniques

on this data structure and also distinguishes between unaligned and aligned memory management.

The list, consisting of list items that have a reference to their predecessor and successor, holds

references to head and tail and offers three basic operations:
insert Adds a new list item to the tail of the list

remove Searches for an item and sets the next pointer of the found item’s prev item to the

item’s next pointer and vice-versa
find Traverses the list, starting from the head, and searches for an item with a certain value

Inserting at the tail usually updates only the tail of the list and not the head because the head
only has to be updated if the list was empty in the first place. Thereby, the head is only read and

3.3. ISOLATED USE CASES 45

not written which minimizes aborts inside the find function because find only keeps the head inside
the read-set and modifications of the tail do not lead to an abort as the end of the list is also

determined when an item’s successor is empty.

The remove function requires finding the item reference first, using the find function. Finding an
item is the most expensive operation in this list implementation as it is in O(n) whereas insert is

O(1). Basically, the remove function is O(1) once the reference to an item is known.

Listing 3.12: Doubly linked list find implementation

1 ListItem* List::find(int data) {

2 ListItem * item = this->first;
3 while (item) {

4 if (item—->data == data)

5 return item;

6 item = item->next;

7 }

8 return NULL;

9 '}

In terms of making our list thread-safe, POSIX mutex locks are easy to implement by locking the
list with a global mutex before an operation and unlocking it afterwards.

When working with HTM, we need to take into account that the memory-operations new and
delete will issue an abort leading to more aborts with HLE and no success at all with RTM
because an elision can never be successful. Thus, to insert a new item, we create the item outside
the critical region (since memory allocation is already thread-safe on its own [65]), lock the list
afterwards, insert the created item and finally unlock the list again. One downside of this method
is that the memory allocation was for nothing if the item exists in the list already - in that case,
the new item has to be deleted again after the list has been unlocked. Moreover, a new list item is
allocated aligned to a memory allocation that is a multiple of 64 Byte to avoid false conflicts.
The remowval of an item is handled by locking the list, locating the item, updating the references
as described above and perform the memory deallocation of the item after unlocking the list. No
issues arise from deleting the item outside the critical region if the references to it are properly
updated to different items or NULL. The same can be achieved with RTM where one has to wrap

the search for items to be removed inside _xbegin () and _xend () instead of HLE locks.

The test is then run with two threads” and a shared list with a base size of 100 values and a value
range from 0 — 1000. All inserted values are stored in a per-thread-queue to make sure that we only
remove items that are contained in the list. This mechanism also ensures that the list size stays

roughly the same.

Figure 3.17 shows how both HTM-approaches have a solid advantage over POSIX and non-elided

"we encountered weird results using four threads, see Appendix Section D.2

46 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

— 6| EZPOSIXzZza TASHLEmmRTM (Elision only) e
g
=z
o
S
o4 B
5
2.
&
&l f
g
&
0 =122 A
50 100

Read probability [%)]

Figure 3.17: Throughputs on a list with varying read-probabilities

TAS with 100% read. HLE still outperforms other approaches with update-only (0% read), however
RTM (elision only) falls behind non-elided TAS. Thus, forcefully retrying every single operation
until it succeeds is not of advantage compared to the HLE approach where a pessimistic execution
path is taken after an abort. However, some elisions are obviously still successful even with 100%
update and eliding some of the TAS calls leads to a higher throughput than eliding none. With
50% read/50% update, the overall throughput falls to under 1000 operations per millisecond for
every locking approach. In terms of HLE and RTM, this can be explained by the combination of
the find method which potentially loads the whole list into the read-set with updates where a single
modification is enough to abort a concurrent read-transaction and thereby the transaction itself as
well. Moreover, find operations traverse the whole list which is more effort than to insert a single
item at the end of the list, thus the throughput also decreases for POSIX and non-elided TAS. Yet,
when all operations try to find a value in the list (read-only), no more cache-invalidations occur

and the throughput increases vastly agin

It should also be noted that the list size is limited when functions are used that traverse the list
(contains and remove with find in this implementation). Depending on the memory alignment of
items, this size can be way smaller than the L1 DCache size. For instance, a list with an initial size
of 1000 items makes elisions impossible and an RTM implementation without a fallback-path does
not succeed. If we implement a List where every ListItem is allocated aligned to a memory location
m with m%64 = 0, false conflicts in the same cache line are avoided. However, this implementation
would still only allow for as many items as there are addresses in the L1 DCache that are a multiple
of 64, thus sizeof (L1 DCache) / sizeof (Cacheline) = 32 KB / 64 B = 512 items.

3.3. ISOLATED USE CASES 47

3.3.4 Hashmap

This section analyzes the more complex data structure of a Hashmap which hashes each value to
one of its buckets that in turn keeps a linked list of items with the same hash. However, we keep

our Hashmap as simple as possible:

Fixed size The Hashmap will not be resized, thus the number of items per bucket increases with

the total items

[}

Hash modulo map size The hash-function for a value x returns x % size

Separate chaining with linked lists The Hashmap consists of an array where each element
(bucket) references to the first item of a linked list that holds the values. Collisions are

resolved by appending to the end of the linked list

No duplicates Duplicate inserts are ignored (thus, the list of a bucket has to be traversed on ever

insert)

The Hashmap implementation offers the three basic operations insert, remove and contains. In
every of these functions, the mutex is only acquired after the value’s hash has been determined.

The contains function then iterates over all items in the hashed bucket and releases the mutex
either when the item has been found or when the end of the list has been reached. To insert an
item, the new item is created at the very beginning of the function to avoid aborts that would
occur if the memory allocation happened inside the critical region. Then, an iteration similar to the
contains function over all list items of the bucket is performed where every value is read to check if
the inset-value is already contained. If the value is found inside the Hashmap, the mutex is released
and the new item is deleted again. If the value is not yet contained in the map, it becomes either
the successor of the last list item or the first list item of the bucket before the mutex is released.
The remove function also iterates over a bucket’s list after hashing the value and acquiring the lock
variable and unlocks the bucket afterwards. If the value to remove has been found in the map, its
list item is deleted and either the item’s predecessor is linked to the item’s successor or the bucket’s

list pointer is re-referenced to the item’s successor.

In the MySQL/InnoDB implementation, a global mutex is used to protect the hashmap data-
structure (as shown later), hence we implement the Hashmap with a global mutex but firstly test

bucket mutexes which is a more efficient approach.

The run function of each benchmark-thread randomly selects an operation according to the defined
probabilities and then performs this operation on the map. We test the Hashmaps with 4 threads
(equal to the number of cores) with operation-probabilities of 25% for an insert as well as a remove
operation, and 50% for a contains operation. Hence, the benchmark executes 50% updates and 50%
reads. Furthermore, the Hashmap is set to an initial load of 1000 values (base inserts) and values

range from zero to INT_MAX.

48 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

Mutex per bucket

The bucket-lock implementation uses one lock variable for every bucket and its linked list. For
example, to insert the value 5 into a Hashmap with 10 buckets, the hash (5) = 5 % 10 = 5th
bucket is locked by using the mutex within the bucket. Thereby, any operation on the value 15
would have to wait for this lock to become available. This is however not the case for elisions that

ignore the lock and instead check for data conflicts.

EaPOSIX ez TAS
HLE mmRTM (Elision only)

0 P |

15

[
\\\\\\Mi—{
|

IER
Y | BN
IR
- A4 -
1NN
I BN
IR
A0

Throughput [Kops/ms]

0 Eﬁ“ ‘
10 100
Size

Figure 3.18: Throughputs on a bucket-locked Hashmap with 10/100 buckets

Figure 3.18 shows that HLE as well as non-elided TAS perform better than POSIX locks.

As it can be seen comparing the results of a hashmap with size 10 against a hashmap with size 100
in Figure 3.18, more buckets lead to a better throughput. Moreover, HLE achieves a performance
increase of 130% and 134% with 10 and 100 buckets respectively compared to a POSIX mutex.

One reason is that the values are spread on more buckets. That means that the linked list of
each bucket is shorter and thus, we have to follow fewer references to reach the end of the list.
For example, the Hashmap with 10 buckets has #base inserts — #buckets = 1000 ~ 10 = 100
items per bucket in average. The Hashmap with 100 buckets only has one-tenth of that, namely
1000+ 100 = 10 items per bucket in average. Moreover, with more buckets also come further spread
of items and a reduced likelihood of conflicts which can be shown by profiling the HLE lock function

for both map sizes.

Table 3.3 shows that the aborts for a map with more buckets are significantly fewer than for a
more compact map. And since the abort rate is lower, there have to be less transaction rollbacks

and restarts which increases the throughput. Another interesting observation is that the share of

3.3. ISOLATED USE CASES 49

10 buckets | 100 buckets
HLE RETIRED.STARTED 48 x 10° 205 x 10°
HLE RETIRED.ABORTED 22 x 109 31 x 106

Transaction abort rate 45.11% 15.02%
Transactional cycles 53.06% 30.58%
Aborted cycles 34.31% 6.72%

Table 3.3: Hardware indicators for a HLE-bucket-protected Hashmap of different sizes (Figure 3.18)

transactional cycles in the total cycles are fewer when the map is bigger. This can be explained by
the decrease in the aborts where only 15% of the transactions have been aborted for the Hashmap
of size 100 in contrast to 45% to a map of size 10. Every abort means that cycles have to be
rolled back and redone and since the re-execution is potentially executed transactionally again (if
the mutex is occupied), more cycles are transactional. Hence, it is only desirable to have lots of
transactional cycles if the aborted cycles are accordingly low and fewer transactional cycles might
lead to better performance if the abort-rate is low in return.

The corresponding performance increases for all lock approaches when increasing the map size are
shown in Table 3.4 where all data is relative to a Hashmap protected by a POSIX mutex. Therein,
the HTM-approaches HLE and RTM improve slightly more than non-elided TAS, e.g. 4.5 and 4.76

times instead of 4.27.

Size | POSIX TAS HLE Elision only

10 100% 199% 230% 237%

100 442% 852% 1033% 1129%
Increase 442% 427% 450% 476%

Table 3.4: Throughput increase for bucket-locked Hashmaps (Figure 3.18)

Concluding further from the thought that an increase in the map size creates a better environment
for HT'M, we can argue that decreasing the size to 1, thus having only a single linked list is not in
favor of HLE or RTM. And indeed, a “Hashmap” with a single bucket with e.g. an RTM approach to
protect the critical sections suffers a performance decrease of the factor 33 whereas the throughput
of non-elided TAS is only decreased by the factor 13. Thus, a Hashmap is a way more efficient data
structure to store values compared to a list in this use-case and especially Hardware Transactional

Memory obviously benefits from a data structure that has a low probability of conflicts.

Global mutex

Instead of locking only a single bucket, we now use a global mutex which is acquired by the
Hashmap’s function instead of using the hashed bucket’s mutex. It should be noted that the data-
structures and their size remain completely the same, the only differences are an additional global

mutex and the different locking-calls. Thus, the performance-differences can not be attributed to a

50 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

different memory layout, but apply only to the different locking approach.

We compare the results of a bucket-locked against a global-locked Hashmap with a size of 1000
buckets.

25 = — a

A
[EZIN |
7
7
7

15

10

Throughput [Kops/ms]

A
07
E//

210 |
0 I !

Per-bucket mutex Global mutex

Figure 3.19: Throughputs of bucket and global locks on a Hashmap size 1000

Figure 3.19 shows that a bucket-locked Hashmap is vastly faster than a globally locked Hashmap.
This can be easily explained by more spread out locks and thereby less conflicts for a bucket-lock
whereas the global lock has a conflict for basically every single operation.

However, the HLE Hashmap does not seem to suffer as much from a global lock as the non-elided
TAS counterpart (RTM does not use the lock at all anyway, thus there is no significant performance
difference). This is because HTM does not care about the lock in the first instance but only about
the data [34]. Hence, with the low conflict-probabilities of 1000 buckets, elisions are still often
successful.

The reason for HLE performing worse than RTM is that if an abort occurs with a global HLE
mutex (due to e.g. data conflicts or interrupts), all threads abort because they all speculated on
the same lock. Furthermore, because there is only one mutex, the Lemming effect can occur where
the control flow basically goes back to serial execution after an initial abort because every thread
writes the mutex instead of eliding it. The condition for the Lemming effect in this case is that
after one thread gets aborted and aborts all other threads by writing the mutex, the mutex has to
become free quickly enough so that one of the aborted threads can write it in the non-elided TAS
call. This time window is quite small but so is the operation that is executed transactionally as
long as the bucket lists are not too long.

The performance decrease is in direct proportionality to the abort rate as shown in Table 3.5 where
HLE with a global mutex has almost ten times (!) as many aborted cycles as with per-bucket

mutexes.

3.4. LINKING WITH A HTM-ENABLED GLIBC 51

‘ per-bucket mutex ‘ Global mutex
Transactional cycles 22.19% 25.90%
Aborted cycles 5.81% 53.56%

Table 3.5: HLE hardware indicators of a bucket contrary to a globally locked Hashmap of size 1000

3.4 Linking with a HTM-enabled glibc

The GNU C Library (glibc) is a C library that realizes the system calls, memory allocation, printing
etc. as defined in the relevant standards, such as ISO C11 and POSIX.1-2008. Glibc is used in most
Unix-like operating systems, making it the de-facto standard C library [66]. Initially released by
the Free Software Foundation in 1987 [67], a community-driven development process is in place
since 2012 [66], [68].

Kleen et al. [25] provides a partly rewritten glibc that allows TSX lock elision for existing applica-
tions that use pthread mutexes and read/write locks. According to the specification, the algorithm
requires RTM and stops eliding for an unspecified amount of time after an abort [25]. We assume
that this means that the whole application does not start any new elisions for a small time win-
dow. This could also be a preventive measure to not execute optimistically in bad conditions and
maybe even avoid the Lemming Effect by approaching pessimistically for some time before trying
optimistic paths again later on.

Since the libc only comes into play in the linking phase, existing sources do not have to be re-
built but only linked against this glibc implementation [69]. We use the most recent version 16 of
the modified glibc® and link it with a simple test-program to demonstrate the functionality and
ultimately with MySQL in the final chapter.

3.4.1 Installation

Once the library has been retrieved from git, it is advisable to compile in a ded-
icated folder, e.g. build. According to the repository readme, lock elision is en-
abled by default for all PTHREAD_MUTEX_DEFAULT mutexes and rwlock when the
—-—enable-lock-elision=yes parameter is specified at configure time (otherwise one can set
GLIBC_PTHREAD_MUTEX=elision GLIBC_PTHREAD_RWLOCK=elision before running the
program). Since this is desirable for us, we call the configure command from the build directory with
that parameter: ./../configure --enable-lock-elision=yes --prefix=$ (pwd).
Note that we just want to test the library and not install it as default which is the form of
installation that we will assume in the following. After calling make and make install, the

library can be used.

8https://github.com/andikleen/glibc/tree/b0399147730d478ae45160051a8a0£00£91e£965

https://github.com/andikleen/glibc/tree/b0399147730d478ae45160051a8a0f00f91ef965

52 CHAPTER 3. EVALUATION OF CORE PERFORMANCE CHARACTERISTICS

3.4.2 Usage

Firstly, the custom glibc is linked with a naive program using a POSIX mutex.

Listing 3.13: Program using POSIX mutexes

1 pthread _mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_lock (&mutex) ;

3 /* do something... */

4 pthread_mutex_unlock (&mutex) ;

5 pthread_mutex_destroy (&mutex) ;

Since we did not install the glibc as standard, we need to explicitly provide the paths that lead to
it. However, we were not able to do so simply by setting the LD_LIBRARY_PATH since we ran into
relocation errors. Instead, we change the shared library search path at runtime (rpath) and also
link to the dynamic linker of the custom glibc.

The path to the components of our glibc can be provided using the -Wl,--rpath flag.
-W1, someflag passes all arguments after -W1, as a space-separated list of arguments to the
linker. For instance: gcc -Wl,a -Wl,b eventually becomes 1d a b.

We also need to set a different linker which can be done with -W1, ——dynamic-linker. List-

ing 3.14 shows the overall linking command for our program.

Listing 3.14: Linking with custom glibc

1 g++ \

2 -Wl, --rpath=/path/to/glibc-htm/build/lib \

3 -Wl, -—-dynamic-linker=/path/to/glibc-htm/build/lib/1d-1inux-x86-64.s0.2 \
4 —-fgnu-tm \

5 -0 program program.o

When we run our program and check that the pthread calls lead to elided transactions, perf confirms

that lots of cycles have been executed transactionally.

When we run the sample program from Listing 3.13 with a simple addition in the critical region,
perf shows us 75.20% transactional cycles with 0% aborts. If we change the mutex lock call to
while (pthread_mutex_trylock (&mutex) != 0) _mm_pause (), the perf output shows
96.12% aborts, hence using pthread_mutex_lock results in less aborts although the overall

throughput might still be better when implementing a spin-lock and using the TAS function due
to reduced wait times.

Since we found that the case of meeting an initialization or locking method that does not work

with the elided glibc happens fairly often”, our suggestion is to test the used combination in a small

9 Also see Appendix Section B.1 for pitfalls with this glibc

3.4. LINKING WITH A HTM-ENABLED GLIBC 93

sample with perf and to consult the project homepage of the glibc implementation before using the

(assumed) elided mutexes in a larger system.

This HTM implementation of the glibc does not provide all libraries, for instance the C++4 standard
library 1ibstdc++ is missing. Since the simple program we just linked does not make use of any
standard components, this is not an issue but more complex programs need to be linked with
components of the custom glibc as well as the standard one. This can be done by appending the
path for other components to the rpath, separated by a colon. The final rpath value that we use

is shown in Listing 3.15.

Listing 3.15: rpath pointing to custom and standard components

1 -Wl,--rpath=/path/to/glibc-htm/build/lib:/usr/1lib/x86_64-1linux—-gnu:/lib/x86_64—-

linux—-gnu

The successful linking can also be confirmed using the Linux command 1dd which lists all library

dependencies of a program. For our program, the output of 1dd is shown in Listing 3.16.

Listing 3.16: Library dependencies of the linked program (without memory addresses)

1 $ 1dd program

2 linux-vdso.so.l =>

3 libstdc++.s0.6 => /usr/lib/x86_64-1linux—-gnu/libstdc++.s50.6

4 libm.so.6 => /path/to/glibc-htm/build/lib/libm.so.6

5 libitm.so.1l => /usr/lib/x86_64-1linux—-gnu/libitm.so.1l

6 libgcc_s.so.l => /1lib/x86_64-linux—-gnu/libgcc_s.so.1l

7 libpthread.so.0 => /path/to/glibc-htm/build/lib/libpthread.so.0

8 libc.so.6 => /path/to/glibc-htm/build/lib/libc.so.6

9 /path/to/glibc-htm/build/lib/1ld-1linux-x86-64.s0.2 => /1ib64/1d-1inux-x86
-64.s0.2

The last line refers to the linker that is used. This output also shows that not every library is linked
with the custom glibc, but e.g. 1ibstdc++.s0.6 and 1ibitm.so.1 still point to the standard
components.

CHAPTER 4

Database Concurrency Control using Intel TSX

While the focus in the previous chapters has been put on micro benchmarks to understand the
application area of Hardware Transactional Memory, this chapter explains crucial concepts and
structures in MySQL’s storage-component InnoDB. Finally, we suggest different modifications to
integrate HTM in InnoDB’s Concurrency Control with the goal of providing improved scalability
to concurrent clients and to solve the issue of a performance loss with too many parallel queries

[70]. These modifications will then be evaluated in the next chapter.

There are many database management systems (DBMS) that one can choose from, such as the
relational implementations Oracle Database, MySQL, Microsoft SQL Server, PostgreSQL, IBM
DB2, Microsoft Access, SQLite, SAP Hana, MariaDB and also NoSQL systems including MongoDB
and CouchDB (document stores), Neo4J (Graph DBMS), Apache Cassandra and HBase (wide
column stores), among others [71]. Despite the long list of options, most databases support ACID
transactions and all of them need to have some form of concurrency control [72], [73]. The informal
term "ACID transactions" has been created by Haerder and Reuter [74] in 1983 and stands for:

Atomicity "all or nothing" guarantee for transactions (either all changes are committed or none)

Consistency a transaction must leave the database in a consistent state, thus be valid according
to all defined rules

Isolation describes how two concurrent transactions do not see each others updates until they are

committed

Durability guarantees that the changes made in a transaction will be visible to subsequent trans-

actions

The parts Atomicity and Isolation are typically implemented by a locking protocol in combination
with logging [72, p. 220].

To be able to fulfill the "I" in ACID and thus execute a transaction in isolation without it seeing

56 CHAPTER 4. DATABASE CONCURRENCY CONTROL USING INTEL TSX

any concurrency anomalies, three broad techniques exist:

Two-phase locking (2PL) shared locks on every data record are acquired before reading it, and
exlusive locks before writing it. The locks are only released atomically at the end of the

transaction and transactions block in a wait-queue until the lock can be acquired [73], [75]

Multi-Version Concurrency Control (MVCC) transactions do not acquire locks but are as-
signed a consistent view of the database in the past to instead. On an update-commit, the
new data is added and the old data is marked as obsolete (thus, data is not really updated

but newer versions of it are inserted)

Optimistic Concurrency Control (OCC) records can be read and written by multiple trans-
actions without blocking but transactions maintain a read- and update-history and check for
isolation conflicts before committing. If conflicts occurred, the conflicting transaction is rolled
back (STM technique!)

As in most Computer Science topics, each technique has its pros and cons: OCC, for instance, is
advantageous with read-heavy workloads because transactions do not block and can execute concur-
rently whereas 2PL performs better in high-contention environments since synchronization needs
to happen anyway [72, p. 221]. On the other hand, 2PL does often not scale well with an increased
multi-programming level due to the introduced blocking overhead [76]. While MVCC generally al-
lows transaction concurrency, it introduces the overhead of many different versions that grows with
each concurrent update and the obsolete dead rows have to be removed when no transactions refer
to them anymore [77]. However, the techniques can also be combined: one example is multiversion
two-phase locking (MV2PL) where transactions are initially categorized as either read-only or as
involving write. Read-only transactions are executed right away by assigning them to the current
version of the database and a transaction modifying data waits for transactions modifying the same
data [78].

When a database guarantees strict serializability, this usually comes at the cost of decreased con-
currency. Hence, attempts to increase the concurrency instead provide weaker semantics than seri-
alizability which might not be necessary for all applications [72, pp. 224-225]. Therefore, the ANSI
SQL standard defines four Isolation levels [72], [79]:

1. READ UNCOMMITTED transactions can read any version of data, even if it has not

been committed

2. READ COMMITTED transactions can read any committed data, different values are

potentially read for repeated reads

3. REPEATABLE READ only one version of committed data will be read but newly inserted

tuples, so-called "phantom rows", might be read during a consecutive read

4. SERTALIZABLE fully serializable access

4.1. INNODB INTERNALS o7

This list goes from weak isolation levels to strong ones and does not include additional levels defines
by various vendors, such as SNAPSHOT ISOLATION where a transaction operates on a snapshot
of the database at the time the transaction began and conflicts are detected by timestamps [72,
pp. 226-227].

In this context, it is further important to distinguish between locks and latches: in database termi-
nology, a latch is a rather fast-executed mutex that is often implemented using hardware instructions
and usually resides in memory near the resources the protect. To acquire a lock in contrast, usu-
ally takes some time because the lock request if first placed into a queue and only dequeued in a
particular order after the lock is given [72], [80]. Furthermore, there is a difference in deadlocks
where locks are allowed to produce deadlocks that are then detected whereas latch deadlocks must

be avoided.

So far, the described techniques have a broad scope of application and are generally used in a range
of different database implementations. In the following, we want to perform concrete modifications
and it is therefore important to narrow our inspection to a single implementation.

We chose to go with MySQL, “the world’s most popular open source database” according to the
official website www.mysqgl.com (visited on 06/10/2014). One of the main reasons next to its
popularity and the fact that it is open source was for us that a new approach to implement
Serializable Snapshot Isolation has been proposed in a previous paper [81] and we had the source

code for MySQL 5.6.10 available as well as some prior knowledge about internal data structures.

MySQL is quite unique in the way that it supports a variety of storage managers [72, p. 238].
Since version 5.5.5, the storage engine InnoDB has replaced the previous MyISAM implementation
[82] due to several reasons one of which is that InnoDB is capable of row-level locking whereas
MyISAM implements table-level locks. Furthermore, InnoDB provides some useful features such as

transactions, foreign keys and relationship constraints and an enhanced crash recovery [83]-[85].

4.1 InnoDB internals

This section narrows the elaboration down to concrete concepts and implementations used in the

InnoDB storage engine that are of relevance to us and that are a key for the following modifications.

InnoDB uses most of the concepts previously explained, such as a combination of two-phase locking
with a multi-versioning database to ensure ACID transactions and exactly the four standardized
transaction levels with the default being REPEATABLE READ [86].

www.mysql.com

58 CHAPTER 4. DATABASE CONCURRENCY CONTROL USING INTEL TSX

4.1.1 Multi-granularity locking

Two general types of locks are used in InnoDB: shared (S) locks and exclusive (X) locks where the
shared lock is used to read a row and the exclusive lock to update or delete a row. Obviously, shared
locks can be granted to multiple transactions at once whereas the exclusive lock does not allow
such. Additionally, coexistence of locks is permitted by multi granularity locking which introduces
intention locks. Intention locks are table locks that indicate which type of lock will be required later
on for a row in that table by a transaction [87]. These intention locks again exist in the two types
shared and exlusive which leaves us at 4 kinds of locks total. Table 4.1 shows their compatibility.
A lock is then only granted if it is compatible with existing locks. This is also the context in which
| X | x| S | IS
X | Conflict Conflict Conflict Conflict
IX | Conflict | Compatible Conflict Compatible

S | Conflict Conflict Compatible | Compatible
IS | Conflict | Compatible | Compatible | Compatible

Table 4.1: Compatibility of InnoDB locks [87]

deadlock detection is performed, e.g. when transactions introduce circular dependency [87]. In some
descriptions of multi granularity locking, an additional null lock (NL) is introduced to indicate that

no lock is requested. The null lock is compatible with everything [32].

4.1.2 Transaction locks

InnoDB uses two kinds of data locks to ensure correct concurrent execution: table locks and row
locks. Whereas row locks are at a fine granularity and allow different threads to access different parts
of the table without interfering with each other, table locks are necessary to avoid the alteration of

a table by one transaction when another transaction is using it [88].

Table locks When a table lock is acquired to ensure that no other transactions modify the
structure of the table when the table or rows in this table are accessed or modified, the lock is
usually intentional (either intentional shared with LOCK_IS or intentional exclusive LOCK_IX).
Intentional locks are converted to explicit locks only when required [89, pp. 736-737]. The shared
lock is used for read-only transactions whereas the exclusive lock would be used for e.g. inserts.
Table locks are only taken if the transaction is not already holding an equal or stronger lock on the
table and there is not another transaction that already holds an incompatible lock on the table.
If the latter is the case, we need to wait for this lock [88]. These steps to acquire the table lock
obviously have to be protected by mutexes to work in a multithreaded environment. In this case,
this is done by the system wide lock_sys—>mutex that protects the search for compatibility with

other tranactions’ locks and the creation of the new lock. Additionally, the transaction’s mutex is

4.1. INNODB INTERNALS 99

acquired before the query thread is enqueued for waiting or the table lock is created. After the
table lock has been created, it is added to the list of transaction locks of the transaction’s requested
locks as well as the list of locks in the table. The table’s locks list is then checked when another

transaction searches for incompatible locks.

Row Locks A row is uniquely identified by its space identifier, the page number within the space
and the heap number of the record within the page [88], [90]. Row locks have implicit and explicit
locks as well: explicit row locks make use of the global row lock hash table whereas implicit row locks
“are logically arrived at based on the transaction information in the clustered index or secondary
index record” [88]. For instance, after a transaction has just modified or inserted an index record,
it still owns an implicit lock on the record and therefore does not have to acquire an exclusive
lock. This means that another transaction needs to determine whether the record is already locked
implicitly by another transaction before it can acquire a row lock.

Explicit locks (LOCK_X) are managed in a hash table within the global lock_sys object. The
hashing is based on the record’s page address, hence all locks on the same page are in the same
hash bucket and since there are multiple records in a page, locks of different records are possibly
mapped to the same hash bucket [88], [90] where they are handled in a single linked list. When
acquiring an explicit lock, the first step is to search the hash table for an explicit row lock of the
transaction with equal or stronger lock mode. If such a lock is not found, the hash table is used
again to check if other transactions have a conflicting lock on the row (if yes: wait). Afterwards, the
lock is created by setting the appropriate bit in the lock bitmap based on the heap number of the
row, then inserted in the global hash table of row locks and added to the list of the transaction’s
locks. All locks of a transaction are released at the end of the transaction, so either on commit or
rollback. With an isolation evel of READ COMMITTED, the SQL layer can even release the locks
before the transaction ends [88].

Obviously, the hash table managing the row locks is heavily accessed: for instance, a run of the
later introduced txbench led to approximately 2.5 million retrieved hash cells per second (without
network overhead).

It also needs to be protected by mutexes again which is done with the global lock_sys—->mutex
and transaction level mutexes again.

Furthermore, a lock mutex (lock_sys->wait_mutex) is used to protect operations on the lock

wait table which manages threads that are waiting on a lock.

4.1.3 Function hierarchy

The source code of InnoDB is organized in the manner of putting most logical operations in their
own methods (or macros) even if it is just a simple function such as a test-and-set. This allows
to adjust to different operating systems with more ease and we are also in the position to change

certain code parts quickly. Figure 4.1 shows the call-graph for the relevant function in the InnoDB

CHAPTER 4. DATABASE CONCURRENCY CONTROL USING INTEL TSX

mysql/storage/innobase

‘ mutex_spin_wait

A

mutex_enter_nowait_func

sync
syncOsync.cc

‘ mutex_validate

mutex_own ‘

[syncOsync.h] trx0Otrx.h] lockOlock.h

include

syncOsync.ic

osOsync.ic | osOsync.h |

0S
osOsync.h [osOsync.cc

-~
A A ? A

lock_mutex_enter
lock_wait_mutex_enter

lock_mutex_exit
lock_wait_mutex_exit

trx_mutex_own

‘ trx_mutex_exit ‘

L I

struct
ib m;ex_t -4 vy yvy
typedef |‘ mutex_enter ‘ ‘ mutex_exit

L lock_word

‘ trx_mutex_enter ‘

fs_mutex
pis_| - mutex_enter_func
enter_func - -

y -]

fs_mutex .
pe)&t func %} mutex_exit_func b'

rV } \

|-
" lib_mutex_test_and_set

\J

‘ mutex_get_lock_word mutex_reset_lock_word

os_fast_mutex_unlock

4

os_fast_mutex_trylock

\

os_fast_mutex_unlock_func

y

os_atomic_test_and_set_byte

-

pthread_lock/unlock, ... atomic typedef

function .
call

Figure 4.1: InnoDB Concurrency Control call-graph

4.1. INNODB INTERNALS 61

Concurrency Control where the gray rectangles on the very left denote the folders (packages) relative
to the storage/innobase directory inside MySQL and the white rectangles slightly to the right
of the directories the file names. For instance, the function mutex_enter_nowait_func in the

top left corner resides in the file syncOsync.cc in the directory storage/innobase/sync.

While we already discussed the syslock (lock_mutex_enter) and transaction mutexes
(trx_muter_enter), the lock_wait_mutex is acquired when threads are put to wait for a
lock to be released.

Generally, a mutex does not only hold the actual mutex value in its 1ock_word member where
lock_word_t is defined as LONG on Windows and as byte otherwise but also additional
information such as the PID of the thread that acquired the mutex or a performance schema
instruction hook.

It is further shown that the lowest functions above OS-specific functions are
ib_mutex_test_and_set, mutex_get_lock_word and mutex_reset_lock_word - they
then call specific OS functions depending on availability. If the system has atomic builtins for exam-
ple, os_atomic_test_and_set_byte will be called, otherwise os_fast_mutex_trylock.
These OS functions are then defined in the InnoDB directories and files containing os.

We also observe that the actual mutex_enter func and mutex_exit_ func functions are
wrapped in a pfs function which is responsible for performance analysis in the context of the
MySQL Performance Schemal [91].

The functions mutex_own and mutex_validate are mostly used for assertions, e.g. when a
function relies on a mutex that it does not acquire itself but that it should own according to the
call-order where a previous function already acquired the latch.

This call-graph is not complete but it outlines the most important dependencies and call-hierarchies.

Moreover, we find that a central method of InnoDB’s Concurrency Control, the mutex_spin_wait

function, is implemented in a similar manner to the TAS-T spin-lock.

Listing 4.1: Excerpt of InnoDB mutex_ spin_ wait

1 UNIV_INTERN
2 void

3 mutex_spin_wait (

4 ib_mutex_t* mutex, /x1< in: pointer to mutex x/
5 /]

6

7 ulint i; /% spin round count =/

8 i = 0;

10 spin_loop:

11 while (mutex_get_lock_word(mutex) != 0 && i < SYNC_SPIN_ROUNDS) {
12 if (srv_spin_wait_delay) { // srv_spin_wait_delay is set to 6
13 // ut_delay delays for the argument in microseconds on 100 MHz Pentium

Lthe pfs wrapper is only be used if UNIV_PFS_MUTEX is defined which it is by default

62 CHAPTER 4. DATABASE CONCURRENCY CONTROL USING INTEL TSX

14 ut_delay (ut_rnd_interval (0, srv_spin_wait_delay));
15 }

16 it++;

17 }

18

19 if (ib_mutex_test_and_set (mutex) == 0) {
20 return;

21 }

22 i++;

23 if (i < SYNC_SPIN_ROUNDS) {

24 goto spin_loop;

25 }

26}

Listing 4.1 shows that the spin_loop begins with a while-1loop that delays until the mutex is
no longer occupied which is the test part of the function. After the mutex is free, a test-and-set of
the mutex is attempted which returns on success. If the TAS call fails, we go back to the spin-loop
and test again until the mutex is free. Thus, the implementation only differs in that it tests first
and tries to set afterwards (one could name this T-TAS) whereas the TAS-T implementation tries

to set straight away and only tests if setting the mutex fails in the first place.

4.2 Modifications to apply HTM

Since earlier benchmarks have shown that Hardware Transactional Memory is inter alia limited in
its size and duration, using it for a complete transaction or query would exceed these limitations.
Instead, we aim for the latches (mutexes) protecting these transaction locks which should mostly

be within the constraints.

Based on the previous section that analyzed the InnoDB internals, we identify several approaches

to include HTM in the InnoDB Concurrency Control:

low-level HLE modify the lowest-hierarchy calls that actually write the mutex, therefore replace
all writes to the mutex with HLE

low-level retried modify the lowest-hierarchy calls with an RTM version that retries the elision

100 times after an abort before using the latch

glibc compile MySQL with a custom HTM glibc - similar to the low-level calls but without im-

plementing HTM on our own, only with different linking

lock-mutex use the TAS-T implementation with HLE for the system-wide lock mutex that pro-

tects inter alia the hash map of all row locks

4.2. MODIFICATIONS TO APPLY HTM 63

transaction latches use the TAS-T implementation with HLE for the latches protecting the locks

of a transaction

It is worth to note that the versions low-level HLE, low-level retried and glibc all target all mutex
writing functions in the application, only with different behavior: low-level HLE applies HLE and
thus uses an implicit latch-fallback after an abort whereas low-level retried doesn’t fall back to write
the latches before retrying the elision several times. With the glibc version, a system-wide timeout

stops elisions for some time, thus potentially avoiding the Lemming Effect.

Another mutex that could be targeted is the wait_mutex which we will not modify in particular
because the operations inside the critical region defined by this mutex often involve waiting oper-
ations and system calls when a thread is queued to wait for a lock to become free. As discussed

earlier, operations with a long duration and system calls are not advantageous for HTM.

4.2.1 Targeted functions

To implement the version targeting the most low-level calls to the mutex, we adjust
ib _mutex_test_and set and mutex_reset_lock word to use HLE with the -calls
__hle_acquire_test_and_setd4and _ hle_release_clear4 from the hle-emulation
header as illustrated in Figure 4.2. Therefore, we also need to modify the ib_mutex_t struct by
changing the definition of the lock_word to unsigned. No modifications are necessary in the

function mutex_get_lock_word since it only returns the value of the 1ock_word.

When we target only specific mutexes, e.g. the lock-mutex, we need to start higher in the call-graph
as shown in Figure 4.3. Here, we leave most calls as they are and add new macro- and function-
definitions, hle_mutex_enter and hle_mutex_enter_funcaswellashle_mutex_exit and
hle mutex_exit_func that in turn use the HLE functions defined in the hle—-emulation
header. The hle_mutex_enter_func is implemented with the TAS-T lock algorithm in Sec-
tion 2.4.3. After applying these changes, we only need to change the respective macro defini-
tions, in this case lock_mutex_enter and lock_mutex_exit to point to the new functions.
The trx-locks can be changed accordingly by modifying the macros trx_mutex_enter and

trx_mutex_exit.

4.2.2 RTM implementation with fallback path

To apply RTM to the low-level mutex calls, we proceed in a similar manner as with HLE and
introduce the procedures rtm_mutex_enter, rtm_mutex_enter_func, rtm_mutex_exit,
rtm_mutex_exit_func. However, instead of the hle—emulation header, we add our own file
myrtm.h and myrtm. cc to define and implement the RTM lock function. To get MySQL running,

the implementation file myrtm.cc has to be linked during compilation which can be achieved

64

CHAPTER 4. DATABASE CONCURRENCY CONTROL USING INTEL TSX

include

[syncOsync.h

syncOsync.ic

‘ mutex_enter ‘

‘ mutex_exit ‘

fs_mutex
pis| - mutex_enter_func
enter_func - -

0s
0s0sync.h|osOsync.cclosOsync.iclosOsync.h|

include

p:(*ltm?:ﬁz* H mutex_exit_func } *

os_fast_mutex_trylock

os_fast_mutex_unlock

\/

os_fast_mutex_unlock_func

os_atomic_test_and_set_byte

pthread_lock/unlock, ... atomic ;

Old, replaced New .
function call function call

Figure 4.2: Modifications to make all low-level mutex calls use HLE

4.2. MODIFICATIONS TO APPLY HTM

65

include

0s
osOsync.h | os0Osync.cc

[syncOsync.h| trxOtrx.h | lockOlock.h

syncOsync.ic

osOsync.ic | osOsync.h |

mysql/storage/innobase

lock_wait_mutex_enter lock_wait_mutex_exit

‘ trx_mutex_enter ‘ ‘ trx_mutex_exit ‘

y L) \j v

1 typedef mutex_enter ‘ ‘ mutex_exit ‘
_lock_word #

fs_mutex fs_mutex .
prs_ - mutex_enter_func P » - mutex_exit_func
exit_func

enter_func \} #

‘ mutex_get_lock_word ‘ ‘ mutex_reset_lock_word ‘

ib_mutex_test_and_set

os_fast_mutex_unlock

os_fast_mutex_trylock

Y

os_fast_mutex_unlock_func

Yy v

os_atomic_test_and_set_byte

e

pthread_lock/unlock, ... ‘ ‘ atomic ‘

E.";"“;.;."E Old, replaced New .
E._..Y.pf_i__,j function call function call

Figure 4.3: Modifications to use HLE for the 1ock_mutex

66 CHAPTER 4. DATABASE CONCURRENCY CONTROL USING INTEL TSX

by adding it to the list of INNOBASE_SOURCES in storage/innobase/CMakelLists.txt.
Furthermore, the cmake CXXFLAGS need to be extended by —fgnu-tm -mrtm to allow RTM.
This can be done by passing the option ~-DCMAKE_CXX_FLAGS="-fgnu-tm_-mrtm" to cmake.
The actual RTM functions are implemented as described in Section 2.1 with 100 retries and a
fallback path if the elisions haven’t succeeded after the maximum amount of retries. Moreover,
Section 3.1 has shown that it is necessary to keep the mutex in the read-set, thus we check the
value of the mutex and abort if the mutex is set already. With the fallback path in mind, the unlock
function distinguishes between elided and non-elided execution and either commits the transaction

or unlocks the mutex.

4.2.3 Relinking with the HTM-enabled glibc

A special case is the version utilizing the HTM-enabled glibc.

To link MySQL with this glibc, we modify the mysgl-5.6.10/CMakeLists.txt in the MySQL
root directory and extend the flags DCMAKE_C_FLAGS and DCMAKE_CXX_FLAGS with our glibc
as shown in Listing 4.2.

Listing 4.2: Define CMakelLists.txt to link MySQL with glibc

1 SET(HTM_GLIBC_FLAGS "-Wl, —rpath=/path/to/glibc-htm/build/lib:/usr/lib/x86_ 64
gnu:/1lib/x86_64-1linux-gnu -Wl, --dynamic-linker=/path/to/glibc
linux-x86-64.s0.2")

2 SET (CMAKE_C_FLAGS "$(HTM GLIBC &
3 SET (CMAKE_CXX_FLAGS "S{HTM GLIBC FLAGS) S{CMAKE CXX

Germ

Although this passes the flags to all components, only ~ 0.53% transactional cycles can be measured

when excluding InnoDB caused by components such as the metadata lock (MDL [92]).

Since atomic test-and-set functions of the operating system are used by default and
not the POSIX implementations, we disable all #define HAVE_ATOMIC_BUILTINS in
the innobase container. This way, the pthread_mutex_trylock is used which is
the POSIX implementation of a TAS function?. Furthermore, the default type of the
pthread_mutex_attr_t my_fast_mutexattr is set to PTHREAD_MUTEX_ADAPTIVE_NP
which does mnot allow for elisions as mentioned previously. Hence, we introduce the
pthread_mutexattr_t my_mutexattr_htm as an attribute that is not set to any type. This
attribute is then used in the mutex initializations in the os_fast_mutex_init_func function

(storage/innobase/os/os0sync.cc).

2actually, the OS lock function is used, hence if the distribution is built on Windows, no POSIX is used at all

CHAPTER O

Evaluation of HTM in MySQL /InnoDB

After applying all modifications of the previous chapter, we can now analyze the results. Therefore,

we use the tx-benchmark with one client-server and one MySQL-server!.

5.1 MySQL configuration

Our MySQL version 5.6.10 is configured with the following parameters which have been adopted

from the configuration in a previous paper targeting similar components within the database [81]:

max__connections 1000
performance schema OFF
table__open__cache_ instances 32
query_cache type 0
query__cache__size 0
innodb__buffer pool_size 2.5 GB
innodb__log_file_ size 256 MB
innodb__log buffer_size 16 MB
innodb_flush method fsync
innodb_ flush_log at_trx_commit 2
Indexing ON

Table 5.1: MySQL configuration

To make sure that unnecessary 10-overhead by writing the log-state on the hard-drive is avoided, we
use the temporary filesystem (tmpfs) for MySQL’s tmpdir. This can be achieved by creating an ac-
cording directory e.g. in the /tmp directory, specifying it as a temporary filesystem in /etc/fstab
with the line tmpfs /tmp/mytmpfs tmpfs rw,uid=123,gid=456,size=2G,nr_inodes=10k,

!The hardware and environment of the server running MySQL can be found in Appendix Chapter A

68 CHAPTER 5. EVALUATION OF HTM IN MYSQL/INNODB

mode=0700 0 0, mounting it and either appending the line tmpdir=/tmp/mytmpfs below the
[mysgld] section to the my.cnf file [93] or passing the option ——tmpdir=/tmp/mytmpfs to the
mysqgld process. The query SHOW VARIABLES LIKE ’tmpdir’ should then show the updated
directory after a MySQL restart [94].

5.2 Benchmarking with the txbench

To measure the performance of the different MySQL versions, we use the txbench presented by
Jung, Han, Fekete, et al. [81].

This benchmark wuses three tables txbench-{1, 2, 3} containing two non-null inte-
ger columns (one of them is the primary key) and ten variable sized TEXT columns
b_value-{1, 2, ..., 10}. The tables are then populated randomly with 100K items and
can be queried by either read-only transactions or read-update transactions where an update is
issued after the read. With an isolation level of READ COMMITTED, transactions can only read
committed data but read different values for repeated reads potentially.

The read-only transaction consists of a single Select-From-Where query and reads 100 rows:

1 SELECT sum(b int wvalue) FROM txbench-i
2 WHERE b int key > :id and b int key <= :id+100

The read-update transaction reads items from txbench-i and updates rows from txbench-j

where j =i+ 1 mod 3. A read-update transaction reads 100 rows and modifies 20 rows.

1 UPDATE txbench-((i+1)%3) SET b value-k = :rand str
2 WHERE b int key = :idl

3 OR b int key = :id2

4 OR ... b int key = :1d20

The benchmark then outputs the times for (1) the query without the commit, (2) the commit only
and (3) the composition of both, each of which is measured per thread. We further extended our
version to provide standard deviations and a total throughput. Figure 5.1 illustrates the composition

of the two queries.

5.3. COMPARISON AND ANALYSIS OF THE APPLIED CHANGES

69

COMMIT

SELECT sum(b int value)
FROM txbench-i

WHERE b int key > :id
AND b int key <= :id+100

Read

COMMIT

UPDATE txbench-((i+1)%3)
SET b value-k = :rand str
WHERE b int key = :id1

OR b int key = :id2

OR ... bint key = :id20

SELECT sum(b int value)
FROM txbench-i

WHERE b int key > :id
AND b int key <= :id+100

Read-Update

Figure 5.1: txbench composition

5.3 Comparison and analysis of the applied changes

After applying the modifications described in Section 4.2, we can now compare the performances

of the different versions using the txbench with 75% read-only and 25% read-update transactions.

7 T T
% 20* ‘——‘_,- ________ | —|
3 T
§ 15 | /,/ .
= .x’
E 107 ,/”]
- .-
a .-
@ 51 - i
s | - '
k= -
E{ 0 | | | | | |

1 2 4 8 16 32 64

Threads

Figure 5.2: Unmodified MySQL 5.6.10 throughput as measured by the txbench

Figure 5.2 shows the throughput of the unmodified MySQL 5.6.10 version subject to the multi-
programming level or the amount of client-threads. It can be observed how up to 16 threads, the
slope of the graph is almost linear (twice as many threads would ideally lead to two times the

throughput). However, the transition from 16 to 32 connections already shows a decreased slope

70 CHAPTER 5. EVALUATION OF HTM IN MYSQL/INNODB

and from 32 to 64 threads, the throughput almost remains unchanged.

6l tzzaread-only O read-update] |
%)
£
oo4r i
]
=
<}
=
— 21 B

1 2 4 8 16 32
Threads

Figure 5.3: Transaction latencies (unmodified version)

This per-thread throughput decrease can be shown especially well by analyzing the transaction-
latencies displayed in Figure 5.3 where the read-update latencies stay roughly the same up to 16
threads and then double on the transition from 32 to 64 threads.

The read-update transaction performs more work than the read-only transaction and thus has
a higher latency. From one to eight threads, there is no noticeable difference in the transaction
latencies which indicates perfect scaling. The reason for the good scaling even with eight threads
- which is more than the four cores on our machine - is that the cores are not fully busy due
to network latencies. Thus, with eight client-threads firing requests and waiting for responses,
the delay between receiving the response and firing a new request is apparently large enough to
have only four threads effectively running concurrently on the MySQL-server. Analyzing the CPU
utilization for four client connections with the Linux processor activity tool top, the load of each
core is approximately 50%. However, when it comes to 16 threads, the cores are under a 100%
workload and we can observe a first increase in the transaction latency. This increased waiting time
is even more visible when it comes to 32 and above all 64 threads where the latency is twelve times
as big as initially. Furthermore, the read-update latency increases more than the latency of the
read-only transaction which indicates that a fair amount of the performance decrease has its cause
in the locking system. Whereas a read-only query will only be assigned a temporary read-view,
read-update threads requires exclusive access on data that will be modified.

Ultimately, when running the benchmark with 256 concurrent threads (not shown in the figure),
the performance even drops below the throughput of 16 threads and the read-update latency is ten
times as much as with a fourth of the threads. In a different benchmark, MySQL was queried with
up to 8192 simultaneous database connections and the performance measured in transactions per
second falls close to zero [70]. This illustrates how serious scaling issues arise when there are too
many concurrent requests to a database and a single client’s request takes increasingly more time

the more concurrent requests are processed.

5.3. COMPARISON AND ANALYSIS OF THE APPLIED CHANGES 71

T
925 - B unmodified low-level HLE ~®- low-level retried

7
=
é) glibc -4 lock-mutex -x transaction latches
§ 20 8
s
g 15 2
= 10f 2
g ™
%0 5 [m‘mm.mf@‘ﬂ -
b [o
ﬁ 0 g-'""‘ | | | | | |

1 2 4 8 16 32 64

Threads

Figure 5.4: Comparison of different MySQL versions

When we compare the unmodified version with the modified versions in Figure 5.4, we observe that
the modifications do not increase the throughput. Even worse, some versions show a throughput-
decrease compared to the unmodified version, especially the modified system lock-mutex collapses
with more than eight threads and decreases the performance to less than a third (29%) of the
unmodified version with 64 threads. The version replacing all low-level calls with HLE is only
slightly worse and has a throughput fairly similar to the glibc which also replaces all POSIX mutex
calls but with a different technique that does not elide for some time after an abort. When we retry
the low-level calls more often, the throughput becomes even worse. By replacing the accesses to the
transaction latches with elided calls, nothing really changes; the throughput remains unchanged to
the unmodified version.

We can elaborate further on these observations by using the perf tool to analyze the transactional
and aborted cycles per amount of connections and per version (see Figure 5.5). First of all, an issue
that can be observed is that more transactional cycles often come with more aborts. For instance,
the low-level HLE version has the most transactional cycles with approximately five percent of all
cycles compared to the other versions but with over a third of these cycles aborted again, it also
has the most aborts. In contrast, the lock-mutex version has only a share of 0.04% aborted cycles
compared to the total cycles or 4% of the transactional cycles but there are also only 1% cycles
that are transactional. A similar effect can be observed with the version with modified transaction
latches and the glibc has the highest abort rate relative to transactional cycles, with almost half of
them aborted.

The modification of the Transaction latches has almost no transactional cycles because there is only
a small number of elements in the transaction’s list of acquired locks - our measurements showed
a mean value of 1.5 items.

When we compare the glibc version with the low-level HLE version, we observe that the glibc version
has less transactional cycles. Because no new elisions are started after an abort, less transactional

cycles are obvious. However, the aborted cycles decrease less than the transactional ones compared

72 CHAPTER 5. EVALUATION OF HTM IN MYSQL/INNODB

6 I I I I
= i [Jtransactional cycles aborted cycles
»n M n M - N -~ M -
8 _ . _ _
[} - |
° 4
()
=
+~
S)
+
B 2+ f H : : |
) WE sHHE g - " 1 {F A (1
= ' A 5 - g y . | R . ’ " 8
< AL F A FILE ! R Kl [(F HE A1 FH (P
= : H L g . 1 L[L H AL FI
n 1 [H :H RINLE :H § H Bl H Bl] (E SRS
o LM o TETEIEN o N o T S 11 e
(&) n () n (&) 0 Q n [n (&) n [\ n
HEL58 ET28% BToEE HELEE HEoE8 E5s58 HE258
TSl TmEw=EE EEwWw=EE T3l MEw=2E EEw=E TEw=El
—~2 B =% E% =% 8% =% Ex —% 8z 9% Ex —% &%=
Soows S s P L P2 wTs S e S wTL S 4T
= = = = = =] =
L2 g3 2L g3 kg go BE S g §o kg o 2P ES
Lo —25 Lo —~g Lo —5 Lo —~35 Lo —5 Lo —~3F Lo —3
B g B g B~ g B g B~ g B g B~ Q
=} s O < O s O < O s O < 9 <
° g 2 =| ° = 2 =| ° | < =] ° g
@ & @ @) @]
— — — — — — —
+ + + + + +~ +
1 2 4 8 16 32 64
Threads

Figure 5.5: Transactional and aborted cycles of the modified MySQL versions

to the low-level HLE version, leading to some slight performance deficits. Adding the retried low-
level version to this comparison, we can observe that it has generally marginally less transactional
cycles than the non-retried version and roughly the same amount of aborted cycles. We therefore
conclude that the conflicts that lead to aborts in the low-level HLE version can not easily be resolved
by simply retrying the operation and more sophisticated modifications in the data structures and
algorithms would be necessary to decrease the aborts.

Ultimately, the lock-mutex version has only 1% transactional cycles in the beginning and this
number decreases once 16 concurrent threads are using the capacity of the cores. This provides an
explanation for the sudden performance collapse in Figure 5.4 and with 64 threads, only 0.3% of the
cycles are transactional. Since the aborted cycles remain the same compared to total cycles, their
share of transactional cycles obviously rises. For instance, with eight threads, 4% of the transactional
cycles are aborted whereas with 64 threads, this value grows to 11 percent points. This indicates
that transactions that could be committed transactionally with up to eight threads no longer
succeed and are aborted during their execution. However, we assume that they are not aborted
in their very beginning due to the massive performance decrease. After an abort, the transaction
is executed non-transactionally and following transactions might be executed non-transactionally
as well due to the Lemming effect. These two effects explain the decrease of transactional cycles
in this version. Furthermore, we do not think that the TAS-T implementation for the lock-mutex
contributed to the performance-decrease since it did no harm to the transaction latches. Hence,

the reasons are solely in the MySQL/InnoDB structures which are apparently not immediately

5.3. COMPARISON AND ANALYSIS OF THE APPLIED CHANGES 73

advantageous for Hardware Transactional Memory.

To find the reasons for the aborts, we collect event statistics using perf again.

I I I I I I
[conflicts H conditions Hunfriendly instructions /nesting incompatible & other
1007TTT"""" e I s I o s O [o I 585 [s I o e A S 1 1 o B2 F B A
. L Ly L L L " L [N I (N iy 350y N L Ly L e fo] Ly eyl e [N i N i A L o L L e’
. L N L L L L L e e N L Ly [N . s] Ly eyl e Ly L L L L N L L]
o A i I 1 of e [o] o i i Lo it sl e s O il £
o 8 I 1 o ey [og] o i i c e s o L
L | CHE CHHL HHE RillnlE TIE | : w
0 3 am S [T 1= [T EC L = =
NITO KR N0 O KR 0O KR IO KR ITO KR [I'UUMVJ N0 KR
o0 0 < Q0 U< o0 v < o0 o < Q0 0 < o0 v < o0 v <
[P e S i [e [= [Pl i i [e
HTh =S O aniciry R=l anliciry R= anieiry =) anliciry S= anieiry R= aniciry S=
= S - ol S a0 + ol 5 + ob 4 LS LoD 3
—~ 2 B —9% 8% —~9% B —~9% ET —~% EX —~9 8z —~9° E%
[} 1 — <) 1 — [¢6) | — O 1 —] 1 — (] 1 — () 1 —
5T 92 5T 9 g 29 S8 53 o4 5T 92 2% S8 53 o4
— > 0.9 — > 0.9 — > o .9 S o.© — > 0.9 — > 0.9 — > 2.9
D — RS —) — e) —) — RS — e) — e
B g B g B g B~ g B g B g B~ 0
S S o o S o o
~E T —kE y —E § —E X —kE y —E y —E 3
=) = < = =) = =) = = = =) = =) =
— — — — — — —
< < < < < < <
— — — — — — —
+~ + + +~ +~ + +~
Threads

Figure 5.6: Composition of abort events

The labels in Figure 5.6 are short-hand for the abort codes MISC1-5 from Section 2.3.3, using
either a short summarizing description.

Firstly, the events analysis tells us that no aborts happened due to uncommon conditions or
incompatible memory types (MISC2 and 4).

Then, a lot of aborts with the low-level versions (including glibc) occur due to unfriendly
instructions or a transaction nesting limit overflow. Although, in terms of the low-level HLE
version, we need to keep in mind that MySQL’s mutex spin implementation waits in between
spins if the mutex is occupied, similar to our implementation with a system pause call. Hence,
the initial assumption is that many of these aborts actually have their cause in a mutex which
has been occupied earlier by another thread and fail the transaction early due to a non-zero value
of the lock word. However, the versions low-level retried and glibc show a similar distribution of
abort causes and they provide a different RTM implementation that does not use system calls
to abort transactions that are preprogrammed to abort. Analyzing the assemblies of the three
different versions, we find that with 64 threads, over two thirds of the aborts occur in the function
buf_page_get_gen which is used to get access to a database page. This function uses multiple
mutexes to protect the memory blocks and it also changes the value of the mutex lock word to
indicate the amount of readers which obviously leads to aborts as well because the read-set is

invalidated. Many of these mutexes are nested inside each other and moreover, pages are read from

74 CHAPTER 5. EVALUATION OF HTM IN MYSQL/INNODB

file when they are not cached. This involves system calls that abort any speculative execution.

In addition, the functions lock_rec_convert_impl_to_expl and lock_rec_create
account for approximately 6 percent of the aborts each. Following its naming,
lock_rec_convert_impl_to_expl converts an implicit record lock to an explicit one
and since it uses the global lock-mutex, a high contention is natural. Similarly, the function to
create a new record lock, lock_rec_create, uses the global lock-mutex as well which increases
the abort rate even more. Another function that accounts for 6% of the aborts is the actual
mutex_spin_wait implementation. One might wonder why this function does not have a bigger
share in the total aborts despite the many conflicts. The reason is that the compiler aggressively
inlines functions in our assembly to reduce overhead due to function calls and the resulting
assembly code will often not call the spin-function because it is inlined instead. In return, this
leads to only the top-level functions that have not been inlined showing up in the perf assembly
report. Since not all functions are inlined however, we see a small appearance of the spin-wait
function in the report as well.

Despite the visible occurrence of the MISC5 event for aborts that are not due to any of the other
abort cases and thus were mostly caused by interrupts in previous test cases, this category of events
is not visible in the low-level versions. From the raw data, we can however tell you that interrupts
occur in the low-level versions as well but since these versions have way more transactional cycles,
other abort events are way more common and MISC5 becomes vanishingly small.

It is further interesting to see how the share of actual data conflicts rises the more concurrent
clients access the database. In the low-level HLE version for instance, the share of MISC1 events

grows from 4% between one and eight threads up to 12% with 64 threads.

In terms of the lock mutex, it seems to start off well with a single thread where aborts are only
due to conflicts and not to unfriendly instructions. Since there is only one thread, it is safe to
assume that the conflicts are not data conflicts but rather capacity conflicts. Taking into account
that no other thread will ever occupy the mutex, it is also obvious that no aborts occur due to
an early abort with a system call (MISC3/unfriendly instructions) when the mutex is occupied by
a different thread. With more concurrent clients, the lock-mutex modification performs worse and
worse which goes along with an increased abort rate due to unfriendly instructions. Considering
that the modifications in this version target only a single global mutex, an abort in one thread will
write the mutex, thereby abort all other threads speculating on the same global mutex and cause a
Lemming Effect. With more and more threads, the likelihood of this happening increases as shown
earlier in Paragraph 2.2, thus less transactional cycles are started and the code is executed in-
creasingly pessimistically as shown in Figure 5.5. Where the aborts mostly occur in the record lock
functions with a single thread, namely 1ock_clust_rec_read_check_and_1lock which checks
if locks of other transactions prevent an immediate read of data and potentially puts the trans-
action in the wait state as well as lock_rec_lock and lock_rec_convert_impl_to_expl,
their hotspot shifts towards functions that put the thread in the wait state such as ut_delay

with 64 threads. Moreover, the function lock_clust_rec_read_check_and_lock also faces

5.3. COMPARISON AND ANALYSIS OF THE APPLIED CHANGES 75

a decreased chance of being able to read a record immediately with more concurrent transactions

and more transactions have to wait which in turn leads to more aborts.

With the transaction latches, we observe a similar distribution as with the lock-mutex: only data
or capacity conflicts occur with a single thread but this number decreases continuously until half
of the aborts have their cause in the MISC3 event, thus unfriendly instructions or nesting limit
overflow. However, the aborts occur almost exclusively in the function lock_rec_create which
does not put the transaction in the wait state and supported by a perf analysis, this means that the
aborts arise when the mutex is occupied and a system call is issued. In contrast to the lock-mutex
where the aborts happen late in the execution path when the transaction is put in the wait state,

the aborts in the transaction-latches happen early and do not lead to a decreased throughput.

Finally, the observation that there is a trade-off between a high share of transactional cycles and
a low abort rate, which has already been made in the analysis of the transactional and aborted
cycles, manifests itself in the analysis of the abort causes again. When we limit the modifications to
a well-defined scope, for instance by targeting only the transaction latches, we achieve a low abort
rate and the aborts effectively occur only due to data conflicts. Unlike with the modification of all
low-level mutex writes where many cycles are transactional but also a significant amount of them

aborts and it is hard to pin down the abort causes.

CHAPTER O

Conclusion

6.1 Conclusions on Intel TSX and its application in a Database

Concurrency Control

This work elaborated on the usage of Intel’s Transactional Synchronization Extensions wherein
Hardware Lock Elision has been analyzed in depth and we proposed a general RTM as well as
a HLE locking implementation that out-performed other implementations, such as POSIX. The
observations in this analysis can contribute to future work, especially by providing critical points
that need to be paid attention to. We defined the application scope of Hardware Transactional
Memory wherein transaction size (inter alia with regards to data associativity and alignment),
duration and nesting is limited which narrows applicable use-cases down to environments that
fulfill these conditions. Moreover, we found that HTM imposes a significant overhead for use cases
with little data, such as a shared counter, which makes this new technique more applicable in cases
where the data structure is more complex and one mutex protects a lot of data, such as a Hashmap.
It is also important that concurrent threads can modify data without interrupting each other, which
can very well be done in a Hashmap in contrast to a doubly linked list.

After analyzing single use cases and data structures, we showed how these fit into MySQL InnoDB’s
Concurrency Control and proposed several modifications based on the previous investigations. In
particular, we pointed out how isolated latches protecting the actual locks can be targeted and
which components within the Concurrency Control seem promising to be provided with HTM.
Although an evaluation of these modifications has not shown a performance increase on our four
core server, we identified the bottlenecks as a lack of cores, global data and system calls within
MySQL that are often hard to exclude. Furthermore, the evaluation has shown that it is fairly easy
to add HLE prefixes to the mutex calls or to link the application with an HT'M-enabled glibc but
this by itself will often not work - one needs to debug the data structures and environment with

the goal of maximizing transactional cycles and minimizing aborted cyles. In a future paper, we

78 CHAPTER 6. CONCLUSION

will further improve the InnoDB modifications and for instance only provide Hashmap latches with
Hardware Transactional Memory as well as carry out the benchmark on a server with 64 Haswell

cores.

Overall, we hope that the micro-analyses can serve as a reference for future papers and that an
advanced application of HTM to MySQL can improve its scalability, especially with more cores.

In addition, we expect Intel to improve the underlying technique of this optimistic concurrency
technique so that it becomes even more useful. For instance, there is no particular reason to keep the
mutex in the read-set. Nonetheless, Hardware Transactional Memory has a great potential to make
programming easier which would already be a huge contribution without any performance increases
to the nowadays complex locking algorithms. HTM could be particularly useful for critical sections
in programming languages such as Java where critical sections are often marked as such without
specifying further how the thread-safety should be achieved. Therein, an optimistic technique might
be superior to a global mutex for the whole critical region. This speculative locking technique is also
perfectly suited for complex data structures that often use a global mutex to deal with concurrency.
Using e.g. HLE prefixes within such structures could provide a significant performance speedup at

a low implementation effort.

The source code of this work is publicly available in a Github repository: https://github.com/
Meash/htmsgl/tree/46afa3dlddl151831led6b364deled8aadl5aab977.

6.2 Lessons learned

Apart from the implications concerning the content covered in the previous section, I also learned a

lot for myself - ranging from implementation details over LaTeX structure to general life strategies.

After some of the first tests produced results that were hard to explain due to multiple data in
the same cache line, I tended to pad everything in the end to avoid false conflicts and memory
alignment that was sometimes randomly beneficial.

Moreover, I have learnt to think about what I actually want to measure and what information
I want to include in the plot that illustrates a benchmark before writing the actual benchmark.
The reasoning behind this is that, for example, including standard deviation later on was already
a burden by itself but for some benchmarks I had to change the actual benchmarking architecture
from fixed operations per thread and measured time to fixed time for the whole benchmark and
measured total operations. If one was to define a fixed amount of operations that every thread ex-
ecutes, then starts all threads and measures the start time, waits until all threads are finished and
measured the end time, only the time of the slowest thread would be measured. Therefore, it makes
sense to define the time that the benchmark should run and see how many operations all threads
together achieve - even better, a warmup time guarantees that no time within the measurement is

wasted on thread creation.

https://github.com/Meash/htmsql/tree/46afa3d1dd151831ed6b364de0ed8aa415aa5977
https://github.com/Meash/htmsql/tree/46afa3d1dd151831ed6b364de0ed8aa415aa5977

6.2. LESSONS LEARNED 79

Related to this is that I now tend to question unexpected results more, as minor as they may be.
This often helps to reveal issues in the big picture and the most minor anomaly can bring new
insights.

In programming in general, every software engineer should learn at some point that naming vari-
ables, functions etc. properly is absolutely necessary for others to understand the code as well as
for oneself when looking at the code again at a later point in time. I found that this applies to
naming TeX-files and especially benchmark results as well. Therefore, my final system of naming
the measured raw data consisted of the benchmark name and all variables that were measured
differently. For instance, I would put a run of the shared counter with 1 counter and 4 pinned
threads per core in the shared_counter directory and name it 1counter—4threads—-pinl
which expresses the whole configuration.

Using a Version Control System (VCS) is obviously recommended and it helped me solely by giving
me a certain ease at refactoring because even if something goes wrong, it won’t destroy all my
work. Going back to a previous revision or comparing the changed file contents is another aspect
of a VCS that came in handy during this work.

I also improved my skills in a variety of programming languages. The git repository with the source
code (excludes LaTeX) contains over 130,000 lines of code and according to git’s statistics, these
mainly consist of 48% C++, 28% C, 17% Shell, 5% Assembly and some files in Java and Python.

In terms of LaTeX, I learned how useful it is to properly structure the code from the beginning
(which I luckily did). I suggest dividing the structure as deep as into sections - more than often
people use one directory per chapter which I did not do because I found a flat hierarchy to be more
efficient due to less folder navigation and it makes it easier to move sections between chapters.
In that sense, it might also be beneficial to use the include command which allows partial
compilation and to exclude all but one file. However, it always adds page breaks before and after an
included file, so I found it to only be applicable for chapters and to use input for sections instead.
Furthermore, I really got into the pgfplots package for the plotting of graphs. It is code-based
(thus is well-suited for VCSs) and allows you in-LaTeX compilation of benchmarks, hence removes
the extra step of compiling the data to an image with, for example, Excel first. The package also
allows to cache compiled plots that will only be changed when the plotting code is modified. Also
in terms of tex, I found the tex.stackexchange.com community particularly useful and there

was no issue that could not be solved with the help of the expertise on this site.

I also felt that the thesis changed how I approach situations in life generally. First of all, I find
the divide-and-conquer to be a particularly well applicable problem-solving technique. Dividing
problems into smaller ones until the problem is trivial to solve is especially well-suited in the
IT-world but can be applied to any area. The whole thesis actually follows this technique: we
got an understanding of the basic HI'M-technique first, then applied it to isolated use cases and
finally integrated everything in the MySQL modifications. Additionally, I now invest more time in

understanding the tools and techniques I am using first instead of jumping right into implementation

tex.stackexchange.com

80 CHAPTER 6. CONCLUSION

details. Reading related work and documentation as a start definitely supports acquiring an idea
of the used technique.
In addition, I also learned to question statements and ask for credible sources and in the same

sense, I reference the sources of my own statements.

APPENDIX A

Environment

A.1 Server Hardware

Our server has a total of 4 cores.

Listing A.1: Core specification

$ cat /proc/cpuinfo

processor : 0

vendor_id : GenuinelIntel
cpu family : 6

model : 60

model name : Intel (R) Core(TM) 15-4670T CPU @ 2.30GHz
stepping : 3

microcode : 0x1l6

cpu MHz : 800.000
cache size : 6144 KB
physical id : 0

siblings 4

core id 0

cCpu cores HI

apicid 0

initial apicid 0

fpu : yes
fpu_exception 1 yes

cpuid level : 13

wp 1 yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge

82 APPENDIX A. ENVIRONMENT

mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2
ss ht tm pbe syscall nx pdpelgb rdtscp lm constant_tsc
arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf eagerfpu pni pclmulgdg dtes64
monitor ds_cpl vmx smx est tm2 ssse3 fma cx1l6 xtpr
pdcm pcid ssed_1 ssed_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx flo6c rdrand lahf 1Im
abm ida arat epb xsaveopt pln pts dtherm tpr_shadow
vnmi flexpriority ept vpid fsgsbase tsc_adjust bmil

hle avx2 smep bmi2 erms invpcid rtm

bogomips : 4589.52

clflush size : 64

cache_alignment : 64

address sizes : 39 bits physical, 48 bits wvirtual

power management:

The cache sizes can be found in the processor specifications®

and by querying
/sys/devices/system/cpu/cpul/cache/index0/size for the data cache size,
/sys/devices/system/cpu/cpul/cache/index0/coherency_line_size for the size of
a cachelineand /sys/devices/system/cpu/cpul/cache/index0/ways_of_associativity

for the set associativity.

Listing A.2: Cache sizes

Ll 4 x 32 KB Instruction Caches
4 x 32 KB Data Caches

L2 4 x 256 KB

L3 6 MB shared cache

Levell DCache size: 32 K
LEVEL1 DCACHE LINESIZE: 64

Ways of associativity: 8

"http://ark.intel.com/products/75050/Intel-Core-i5-4670T-Processor—6M-Cache-up-to-3_
30-GHz and http://www.cpu-world.com/CPUs/Core_i5/Intel-Core%20i5-4670T.htmlfspecs

http://ark.intel.com/products/75050/Intel-Core-i5-4670T-Processor-6M-Cache-up-to-3_30-GHz
http://ark.intel.com/products/75050/Intel-Core-i5-4670T-Processor-6M-Cache-up-to-3_30-GHz
http://www.cpu-world.com/CPUs/Core_i5/Intel-Core%20i5-4670T.html#specs

A.2. OPERATING SYSTEM

83

A.2 Operating system

Listing A.3: Linux and gcc version

$ cat /proc/version
Linux version 3.11.0-custom+

(gcc version 4.8.1 (Ubuntu/Linaro 4.8.1-10ubuntu8)

Furthermore, Hyper-Threading is not used on our machine.

)

APPENDIX B

Technical pitfalls

B.1 HTM-enabled glibc

One needs to pay attention to the initialization of the mutex: tests have shown that initializing
a mutex with a mutex attribute that itself is not initialized will have zero transactional cycles
as a consequence. The same holds true for mutex attributes where the type is set to any of the
four available ones [95], [96], such as PTHREAD_MUTEX_ADAPTIVE_NP (used in MySQL), thus we
recommend to use the PTHREAD_MUTEX_INITIALIZER.

Releasing mutexes linked with this glibc with pthread_mutex_destroy results in the error code
16 (EBUSY) regardless of how the mutex has been initialized. This might result in disruptions

when surrounding software, such as MySQL, checks for an erroneous return value (as it should do
obviously).

B.2 Linking MySQL with custom glibc

Originally, we were able to modify the linker flags with the cmake options shown in Listing B.1
[97].

Listing B.1: Outdated linking of MySQL with glibc

1 GLIBC_FLAGS="-Wl, --rpath=/path/to/glibc-htm/build/lib:/usr/1lib/x86_64-linux—gnu:/
1ib/x86_64-1linux—gnu \
2 -W1l, -—dynamic-linker=/path/to/glibc-htm/build/lib/1d-1inux-x86-64.s0.2"

4 cmake \

5 -DCMAKE_INSTALL_PREFIX=../install .. \
6 -DCMAKE_C_FLAGS="SCLIBC FLAGS™ \

7 —DCMAKE_CXX_FLAGS="5GLIRC FLAGS"

86 APPENDIX B. TECHNICAL PITFALLS

After a system-update however, this did not work anymore since cmake now ignored the
MAKE_C_FLAGS and MAKE_CXX_FLAGS options if the paths were colon-separated.

APPENDIX C

Omitted Benchmarks and figures

C.1 Memory alloation

Listing C.1: Memory (de-) allocation inside RTM

1 #include <stdlib.h>

2 #include <stdio.h>

4 finclude <immintrin.h> // rtm

5 #include "../Stats.h"

6

(VA

8 * @return 0 if success, 1 otherwise
9 */

10 int stack (int size) {

11 if (_xbegin() == _XBEGIN_STARTED) ({
12 unsigned char buf[size];

13 _xend () ;

14 return 0;

15 } else {

16 return 1;

17 }

18}

19

20 /%%

21 * @return 0 if success, 1 otherwise
22 */

23 1int freeStore(int size) {

24 if (_xbegin() == _XBEGIN_STARTED) ({
25 unsigned char xbuf = new unsigned char([size];
26 delete[] buf;

27 _xend();

88 APPENDIX C. OMITTED BENCHMARKS AND FIGURES

28 return 0;

29 } else {

30 return 1;

31 }

32}

33

34 /x*

35 * @return 0 if success, 1 otherwise
36 */

37 int heap (int size) {

38 if (_xbegin() == _XBEGIN_STARTED) {

39 unsigned char «buf = (unsigned charx) malloc (
40 sizeof (unsigned char) = size);

41 free (buf) ;

42 _xend () ;

43 return 0O;

44 } else {

45 return 1;

46 }

a7}

The code in Listing C.1 leads to 0 failures for stack-allocation and 100% failures for heap-allocation

(freeStore and heap).

C.2 Transaction size with randomized access

C.2.1 Access range

We vary the array range that is accessed. The size of the integer-array is fixed.

1 if (_xbegin() == _XBEGIN_STARTED) {

2 for (int 1 = 0; 1 < accesses; i++) {
3 alrand () % modulo]++;

4 }

5 _xend () ;

Figure C.1 shows once more how too much data leads to aborts. In particular, an increase in the

array size can lead to pre-fetching data[98] and aborts occur even if they are not necessary.

C.2.2 Comparison of sequential and random array access

Instead of accessing the array sequentially from front to end, we write and read data randomly

within the whole array. We further distinguish between initialized and uninitialized arrays as defined

C.2. TRANSACTION SIZE WITH RANDOMIZED ACCESS

89

100 —]
—e— size=2042

0l | size=2043 i
S
e 60} i
o
8 40 | |
=
&

20 - -

0

|
1,014 1,016 1,018 1,020 1,022 1,024 1,026 1,028 1,030

modulo

Figure C.1: Aborts with different array sizes and the same access range

in Section 3.2.1.

90 APPENDIX C. OMITTED BENCHMARKS AND FIGURES

zero retries

100
- 80
X . °
g 60
: .
2 .
= 40 | - x No Init |
= ° Init
20 —— Random Write | |
—— Random Read
O.M | | | | | | I I |
0 1 2 3 4 5 6 7 8 9
x10°
X
L 60 e °
S X
e o ‘
ER x No Init
= ° Init
20 . —— Random Write |
° —— Random Read
() liions | | | | | | | | | | I I I I I
0O 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85
100
o 80
X
& 60
z
]
4
g 40 ° x No Init .
é‘ﬁ ° Init
20 —— Random Write |
® —— Random Read
() Giumt | | | | | | | | | | I I I I

| I
0 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85
Array size x10°

Figure C.2: Failure rate for modified array access

C.3. LOCKING OVERHEAD WITH DATA 91

C.3 Locking Overhead with data

The benchmark uses an array of unsignedchars (1 B) with a total size of 1 KB and reads all of its
elements, counting the elapsed time in nanoseconds. The whole array access is protected by either
a POSIX or atomic/HLE mutex or RTM.

300 |-

no synchronization

100 -

Cycles

[\~

S

o
I

[

]
|

1

T
| |

74
Ve
77

77
I

T T
POSIX atomic HLE RTM

Figure C.3: Overheads with locks protecting an array (lower is better)

60 - 2

[75) S

'E —

S 40 = — T

2 —

Q —

= —

< —

Z 20 - f -
—no synchrfiflization
I T T T

POSIX atomic HLE RTM

Figure C.4: Overheads with lock-only (lower is better)

C.4 Partitioning the data access range between threads

All lock variables are stored in an array and the lock_accesses array decides where to access

them. Every thread gets its own distinct region of locks that it can access (Figure C.6).

92

APPENDIX C. OMITTED BENCHMARKS AND FIGURES

Thread 1
Thread 2
Thread 3
Thread 4

Figure C.5: Non-partitioned (hotspot) lock access

Thread 1 Thread 2 Thread 3 Thread 4

Figure C.6: Partitioned lock access

E—Inon-partitioned —— partitioned |

—_
(es)
|

o
[T

Throughput [Kops/ms]
o
I

4 | |
I I E|\
4 8 16
Threads

Figure C.7: HLE locking of 100 (non-/) partitioned lock variables with immediate unlock

C.5. NOTES ON FUNCTIONS DEFINED IN THE HLE-EMULATION HEADER 93

C.5 Notes on functions defined in the hle-emulation header

Listing C.2: Operation or fetch first

1 _ _hle_{acquire,release}_add_fetch{1l,2,4,8} // first adds the value, returns the
lock value with the added value
2 __hle_{acquire,release}_fetch_add{1l,2,4,8} // first fetches the lock value then

adds the value to it, returns the result without the added value

w

IS

/+ Example */

ot

static unsigned lock;

o

unsigned res;

7 res = _ _hle_acquire_add_fetch4 (&lock, 1); // OP_FETCH (operation first, fetch
afterwards)

8 // res == 1, lock ==

9

10 res = __hle_acquire_fetch_add4 (&lock, 1); // FETCH_OP

11 // res == 1, lock == 2

Equivalence of operations Some operations are shorthand forms of others:

Listing C.3: Symbiosis between TAS and EXCH

1 __hle_acquire_test_and_set4 (&lock); == __hle_acquire_exchange_n4 (&lock, 1);

TEST__AND__SET After calling _ hle_acquire_test_and_set4 (&lock), lock will al-

ways be true (1). The return value of the function is the previous value of lock.

Listing C.4: TAS evaluation

static unsigned lock;

[

»

unsigned res;

w

res = __hle_acquire_test_and_set4 (&lock);
// res = 0, lock =1

IS

ot

res = __hle_acquire_test_and_set4 (&lock);
// res =1, lock =1

_ _hle_release_clear4d (&lock);

// lock = 0

res = __hle_acquire_test_and_set4 (&lock);
10 // res = 0, lock =1

(=)

=1

oo

©

94 APPENDIX C. OMITTED BENCHMARKS AND FIGURES

We observe that test_and_set behaves the same as calling exchange with a value of one and
checking the result for equality with one. In fact, _ hle_acquire_test_and_set4 (&lock)

internally does exactly that as defined in hle-emulation.h:

Listing C.5: Implementation of hle_ acquire__test_ and_ set4
1 static _ _hle_force_inline int \
2 _ _hle_##prefix##_test_and_set##size (type *ptr) \
3 \
4 return __hle_##prefix##_exchange_n##size (ptr, 1) == 1; \

As can be seen in this code-part, the whole hle—emulation.h file is a header file filled with
macros that go down to assembler calls. In this extract for example, prefix will be replaced with
either acquire or require and size with oneof {2, 4, 8}.The ptr variable is our lock variable

and hle force inlineisoneof { HLE ACQUIRE, _ HLE RELEASE}.

lock | oldv | newv || lock | oldv | newv | res
0 0 0 0 0 0 1
0 0 1 1 0 1 1
0 1 0 0 0 0 0
0 1 1 0 0 1 0
1 0 0 1 1 0 0
1 0 1 1 1 1 0
1 1 0 0 1 0 1
1 1 1 1 1 1 1

Table C.1: Table of value combinations of HLE ACQUIRE_COMPARE_EXCHANGE

ACQUIRE_COMPARE_EXCHANGE Using Table C.1, we can conclude the way the val-

ues are calculated:

Listing C.6: Pseudo compare__exchange implementation

1 res = lock == oldv;
2 1f(res) lock = newv;

3 else oldv = lock;

C.6 Different random generators within the Closed Bank

rand() System built-in rand function

C.6. DIFFERENT RANDOM GENERATORS WITHIN THE CLOSED BANK 95

Partitioned This case should play into the hands of HLE: no collisions happening at all. This is
achieved through partitioning the account-pool to n partitions where n is the number of threads.

We then assign one partition to each thread and let it modulo-iterate over its accounts.

Custom rand() Assuming that the system built-in rand () -function is responsible for discrepant

results, we implement our own function .

Saved rand Generate and save random values before running the benchmark.

lon the basis of http://www.daniweb.com/software-development/c/code/216329/
construct-your—-own—-random—number—generator

http://www.daniweb.com/software-development/c/code/216329/construct-your-own-random-number-generator
http://www.daniweb.com/software-development/c/code/216329/construct-your-own-random-number-generator

APPENDIX C. OMITTED BENCHMARKS AND FIGURES

Time needed [s] Time needed [s]

Time needed [s]

sysrand
1,000 [‘
= POSIX &zza TAS HLEDmRTM (Elision only) RN
800 i
600 - %
200 - g
o L EIFCIm AL
10,000 80,000 1.5-10°
savedrand
|
60 I E=2POSIXzm TASHLEmm RTM (Elision only) i
40 + % |
20/ = 1
0 E‘Fﬂ‘ﬁﬁ—l Za| ;2 I
10,000 80,000 1.5-10°
customrand
|
E=2POSIXzzza TASCOHLEmmM RTM (Elision only)
60 |- ’
40| - 2
2 | g |
0 Em‘[*'lﬂ}l AL f/,‘\.
10,000 80,000 1.5-10°

Transfers per thread

Figure C.8: Mutex per account in closed bank with 100 accounts and 4 threads

C.6. DIFFERENT RANDOM GENERATORS WITHIN THE CLOSED BANK 97
sysrand
|
EPOSIXEzZza TASIHLEmm RTM (Elision only) Tk
- Al soo
= =
- | 1600 E
- g
] =
- = 1400 o
= g
= =
I = - 200
Elﬁ‘ﬁﬁ A4 ‘” ; 2\ 0
10,000 80,000 1.5-10°
savedrand
|
B EPOSIXzZza TASIHLEmm RTM (Elision only) 160
i =
g
L 140 <
£ g
| =]
- 2
- = 120 5
STl SZIE 0
10,000 80,000 1.5-10°
customrand
|
B E=2POSIX ez TASCIHLEmMmRTM (Elision only) 1 1300
- =
! g 1200 Z
£ 3
= =
a =
= f 1 100 g
= A =0 m .
10,000 80,000 1.5-10°

Transfers per thread

Figure C.9: Globally locked Bank with 100 accounts and 4 threads

98 APPENDIX C. OMITTED BENCHMARKS AND FIGURES

C.7 Hashmap

IR
2AE <
IR
2AF
IR 77
IRR 77
IR 77
IR 77
21BN 77

I I
103 10
Size

Throughput per thread [Kops/ms]
w
[
|

Figure C.10: Throughputs on a globally locked HashMap with various sizes (pr; = pr, = 25%, pr. =
50%, 10000base inserts)

C.8. LOGICALLY-GROUPED CALL-GRAPH OF INNODB ENTITIES

99

C.8 Logically-grouped call-graph of InnoDB entities

include

lock
lockOlock.cc

utOrnd.ic

| trxOtrx.h

utOlst.h

| lockOpriv.h

lockOlock.h

[

hashOhash.h

hashOhash.ic

Hash

UT_HASH_RANDOM_MASK2: 1653893711

returns (key A UT_HASH_RANDOM_MASK2

ut_hash_ulint(key: ulint, table_size: ulint): ul

— % table_size

int |

trx_t trx_lock_t

magic_n: ulint
mutex: ib_mutex_t
isolation_level: ulint

trx_locks:

wait_lock: lock_t*
lock_heap: mem_heap_t*

table_locks: ib_vector_t*

ut_list_node<lock_t>

hash_get_nth_cell(table: hash_table_t*,
n: ulint): hash_cell_t*
hash_calc_hash(fold: ulint, table:
hash_table_t*): ulint

ut_list_node<TYPE>
prev: TYPE*
next: TYPE*
lock_t lock_table_t lock_rec_t
trx: trx_t* table: dict_table_t* space: ulint
trx_locks: ut_list_node<lock_t> +—— - locks: ut_list_node<lock_t> page_no: ulint
type_mode: ulint n_bits: ulint
hash: hash_node .t |
index: dict_index_t*
lists the trx ids of those
transactions for which a lock_sys_t
consistent read should not
see the modifications of o . *.
the database rec_hash: hash_table_t
hash_cell_t hash_table_t
HashMacros
node: void* type: hash_table_sync_t
HASH_INSERT(TYPE, NAME, TABLE, FOLD, n_cells: ulint
DATA) r array: hash_cell_t*
|| HASH_GET_FIRST(TABLE, HASH_VAD: ——_| "_Svnc_?bli ulint .
hash cell t* the ford b terstood sync_obj: union {mutexes:
T H *
HASH_GET_NEXT(TABLE, HASH_VAL): € fold can be understoo ib_mutex_t
hash cell t* as the hash value/key rw_locks: rw_lock_t*}
— heaps: mem_heap_t**
Hash lock_sys->rec_hash

Creates the lock from the
trx->lock.lock_heap and
inserts it into the lock_sys-

RecordLock

>rec_hash table

lock_rec_create(type_mode: int, block: const buf_b

que_thr_t*): dberr_t

trx_t*, caller_owns_mutex: ibool): lock_t*

caller_owns_trx_mutex: ibool): void =
lock_rec_convert_impl_to_expl(block: const buf_block_t*, rec:const rec_t*, index: dict_index_t*, offsets: const |
ulint*): void ™M
lock_rec_lock(impl: ibool, mode: ulint, block: const buf_block_t*, heap_no: ulint, index: dict_index_t*, thr:
que_thr_t*): dberr_t

lock_rec_lock_fast(impl: ibool, mode: ulint, block: const buf_block_t*, heap_no: ulint, index: dict_index_t*, thr: Y
que_thr_t*): enum lock_rec_status

lock_rec_lock_slow(impl: ibool, mode: ulint, block: const buf_block_t*, heap_no: ulint, index: dict_index_t*, thr: | |

lock_rec_has_expl(precise_mode: ulint, block: const buf_block_t*, heap_no: ulint, trx: const trx_t*): lock_t* T
lock_rec_get_first(block: const buf_block_t*, heap_no: ulint): lock_t*

lock_rec_get_first_on_page(block: const buf_block_t*): lock_t*

lock_rec_add_to_queue(type_mode: ulint, block: const buf_block_t*, heap_no: ulint, index: dict_index_t*, trx:

lock_set_lock_and_trx_wait(lock: lock_t*, trx: trx_t*): void // does not actually set the lock e

lock_t*, heap_no: ulint, index: dict_index_t*, trx: trx_t*,

4

I“\k\
=

| i

100 APPENDIX C. OMITTED BENCHMARKS AND FIGURES

- SystemLock
]
3
S lock_mutex_own(): ibool g
S —L lock_mutex_enter()
B M lock_mutex_exit()
TrxLock
H :: trx_mutex_own(trx: trx_t*): ibool
=il 3 trx_mutex_enter() E
LA i
> trx_mutex_exit()
<
£ trx_t
8 _
z
- magic_n: ulint
mutex: ib_mutex_t
state: trx_state_t
lock: trx_lock_t
L
°
=
[}
=
ib_mutex_t
- Lock lock_word: volatile
g lock_word_t
g = mutex_enter(mutex: ib_mutex_t*): void os_fast_mutex:
5]
<] =+ mutex_exit(mutex: ib_mutex_t*): void os_fast_mutex_‘t
w T
only when atomic builtins are no
enabled. Initialized in 0sOsync.cc
Lock PFS
L
é mutex_enter_func(mutex: b pfs_mutex_enter(mutex: ib_mutex_t*):
§ + ib_mutex_t*): void void
<l mutex_exit_func(mutex: ib_mutex_t*): pfs_mutex_exit(mutex: ib_mutex_t*):
? void void
ib_mutex_test_and_set(mutex:
=T . =~
ib_mutex_t*): byte
8
ole Lock
gl 7|
a2 :
g| “—= mutex_own(): ibool
o mutex_spin_wait(mutex: ib_mutex_t*, 1
file_name: const char*, line: ulint): void

Figure C.11: Logically grouped and labeled call-graph of Concurrency and Hashmap functions in
MySQL InnoDB

APPENDIX D

Open Questions

D.1 Abort costs

We already argued that cycles have a greater impact on the performance than transactions. When
taking a closer look at the functionality of HTM and especially what happens after a rollback, Intel
states that a transactional abort leads to the discard of all updates in the transactional region and
the restoration of the architectural state to appear as if the optimistic execution never occured [31,
p. 12-1]. We assume that the mentioned discard of all updates means that all cache lines that have
been used (either read or written) are invalidated and will be reloaded from the next cache level in

the next execution.

The reloading should then be observable in the execution time measured in cycles where the second

execution after an abort on a practically cold cache takes longer than the first execution on a warm
cache.

The cycles can be counted using the rdtsc instruction described in Listing D.1 at the beginning

and the end of the program and subtracting the two values [99], [100]:

Listing D.1: counting cycles with rdtsc (AMD64)

1 _ _inline_ uint64_t rdtsc() {

2 uint64_t a, d;

3 __asm__ volatile ("rdtsc"™ : "=a" (a), "=d" (d));
4 return (d<<32) | a;

This difference should further be equal to the difference of writing to an array that has been loaded
into the cache before and writing to an array with a practically cold cache which can be seen in

Figure D.1. The setup for this graph is to clear the cache first by creating and writing an array

102 APPENDIX D. OPEN QUESTIONS

that exceeds the cache size. Then, another array is created and written but in case of the warm

cache it is loaded in the cache beforehand by accessing all its entries.

T
|

5,000

4,000

T
|

3,000 i

Cycles

T
|

2,000

T
|

1,000

I
Cold Cache Warm Cache
Figure D.1: Cycles required to access an array of 1 KB

The difference between a cold and warm cache amounts to approximately 100 cycles in this test.

To verify our assumptions on the effect on aborts, we create an array of size n, write once to all its

n elements to make sure all the data is in L1 cache and then write in two different ways
1. write to all n elements of the array

2. write to only one element of the array (n times to have the same amount of write-cycles as
the first method)

The both described functions are then executed inside a HTM region marked by RTM. After each
function has accessed all or a single element of the array, the transaction is aborted and we compare

the cycle count per execution.

Figures D.2 and D.3 outline how after an abort, the function writing to all array elements of the
array has to reload everything in the cache whereas the function that writes to a single element

only has to reload a single cache line of 64 Byte.

B
| L LI T[]

n x 64B

L1 DCache

L1 DCache

Figure D.2: Access on all array elements Figure D.3: Access on a single array element

However, we were unable to produce this effect as the cycles for accessing the whole array and only

D.2. LIST WITH FOUR THREADS 103

a single element of it required the same amount of cycles as shown in Figure D.4. One explanation
could be pre-fetching although we accessed the array in a pre-fetching unfriendly manner by keeping

an offset of over four cache lines between two consecutive array accessed.

><1‘04
2,
1.5
8
[
5o
0.5
0
oS ‘&) (%)
g & &
~Q ~Q ()
> v qﬁr
S8
¥ &
S 'ézo
« &

Figure D.4: Cycles of different array accesses (array size 1 KB / 16 cache lines)

D.2 List with four threads

4 | |
- = POSIX =2 TASCHLEmmRTM (Elision only) \
wn
£ y
7 3 % |
(o9 7
a 7
=2}
5 2 |
[o)
)
[=Y0]
=
S 1 1
=
E)

50 100

Read probability [%]
Figure D.5: Throughputs subject to read/update probabilities on an unaligned List (4 Threads)

Figure D.5 shows a TAS lock which behaves as expected: the more reads instead of writes, the

better. Because we work on 4 threads, a write of one threads leads to the invalidation of cache lines

104 APPENDIX D. OPEN QUESTIONS

Transactional cycles ‘ 13.31%
Aborted cycles ‘ 64.61%

Table D.1: Unaligned List HLE transactional indicators

of other threads, thus requiring more cycles to reload the cache lines from a higher level cache.

Read instead does not invalidate cache lines which is a performance gain as shown in this figure.

As shown in Table D.1, we experience lots of aborts. perf report tells us that these mostly
occur in the find function where an item’s value is compared to the search-value. Because the find
function traverses the whole list, it is quite likely that another thread will issue a data conflict by

removing a list item.

Memory management can play a role as Section 3.2.2 has shown. Therefore, we use the
aligned_alloc function to align all our list items to multiples of 64 B (cache line size). The
results of this modified test are shown in Figure D.6 where e.g. for update-only (0% read), RTM’s
performance is three times better than in the unaligned case. However, the improvements are not

nearly as significant otherwise.

. EPOSIXzzza TASCIHLEmmMRTM (Elision only)
n
% 6 —
o
e}
=2
- 41 |
=
oY
=
2
e 2l)
<=
3

0 ﬁm‘ﬂm //‘H

50 100

Read probability [%)]

Figure D.6: Throughputs on an unaligned list (2 Threads)

Having fun with MySQL

Although this section is supposed to be sarcastic and maybe even a bit funny, it also illustrates
that working with the often old (2000’s) code inside MySQL can be a pain. Therefore, I have
full understanding for approaches that just start over and write a whole new database instead of

continuously improving a legacy system.

Listing D.2: Macro hash insert with useful variable names and clear function behavior

1 // in innobase/include/hashOhash.h:122

2 #define HASH_INSERT (TYPE, NAME, TABLE, FOLD, DATA)\
3 do {\

4 hash_cell_tx cell3333;\

5 TYPE % struct3333;\

6\

7 HASH_ASSERT_OWN (TABLE, FOLD)\

s\

9 (DATA) ->NAME = NULL; \

0\

11 cell3333 = hash_get_nth_cell (TABLE, hash_calc_hash (FOLD, TABLE));\
12\

13 if (cell3333->node == NULL) {\

14 cell3333->node = DATA;\

15 } else {\

16 struct3333 = (TYPEx) cell3333->node;\
17\

18 while (struct3333->NAME != NULL) {\

19\

20 struct3333 = (TYPE*) struct3333->NAME;\
21 I

22\

23 struct3333->NAME = DATA;\

24 I\

25 } while (0)

Despite many parts of the code being well-documented, some crucial functions lack an explanation

such as the hash function.

106 APPENDIX D. OPEN QUESTIONS

Listing D.3: Hash function ut_hash_ulint

1 key = key »~ UT_HASH_RANDOM_MASK2; // UT_HASH_RANDOM MASK2 = 1653893711
2 return(key % table_size);

Contents of mysql/storage/innobase/include:
1. utOlist.h
2. ut0lst.h

Because who needs proper naming anyway.

Apparently, MySQL isn’t even finished completely.

Listing D.4: Fix me!

1 #define SYNC_FTS_OPTIMIZE 164 // FIXME: is this correct number, test

You guessed correctly, this is not the only FIXME in the code.

To be fair, MySQL has been written when compiler support and optimizations were far from today’s
standard (most header files show a creation date in the late two thousands). However, the code
often made me laugh and not too seldom cry.

Bibliography

[10]

[11]

M. J. Flynn and K. W. Rudd, “Parallel architectures”, ACM Computing Surveys (CSUR),
vol. 28, no. 1, pp. 67-70, 1996.

J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative approach. Else-
vier, 2012.

D. Geer, “Chip makers turn to multicore processors”, Computer, vol. 38, no. 5, pp. 11-13,
May 2005, 1SSN: 0018-9162. DOL: 10.1109/MC.2005.160.

H. Sutter, “The free lunch is over: a fundamental turn toward concurrency in software”, Dr.
Dobb’s Journal, vol. 30, no. 3, pp. 202-210, 2005.

J. D. Ruiz, Overcoming the embedded cpu performance wall, Jan. 2013. [Online]. Available:
http://www.embedded.com/design/mcus—processors—and—socs/4405280/
Overcoming-the-embedded-CPU-performance-wall- (visited on 05/28/2014).
H.-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen, G.
J. Michaelson, R. Pena, S. Priebe, A. J. Reb6n, and P. W. Trinder, “Comparing parallel
functional languages: programming and performance”, Higher Order Symbol. Comput., vol.
16, no. 3, pp. 203251, Sep. 2003, 18SN: 1388-3690. DOI: 10.1023/A:1025641323400.
[Online]. Available: http://dx.doi.org/10.1023/A:1025641323400.

E. W. Dijkstra, “Solution of a problem in concurrent programming control”, Commun.
ACM, vol. 8, no. 9, pp. 569—, Sep. 1965, 1sSN: 0001-0782. bOI: 10.1145/365559.365617.
[Online]. Available: http://doi.acm.org/10.1145/365559.365617.

IBM, Synchronization techniques among threads, 2005. [Online]. Available: http : / /
publib.boulder.ibm.com/infocenter/iseries/v5r3/index. jsp?topic=
$2Frzahw%2Frzahwsynco.htm (visited on 05/28/2014).

R. Rajwar and J. R. Goodman, “Transactional lock-free execution of lock-based programs”,
SIGPLAN Not., vol. 37, no. 10, pp. 5-17, Oct. 2002, 1SSN: 0362-1340. pDOI: 10 .1145/
605432 .605399. [Online|. Available: http://doi.acm.org/10.1145/605432.
6053909.

Oracle, Concurrency. synchronized methods. [Online]. Available: http://docs.oracle.
com/ javase/tutorial /essential /concurrency/syncmeth .html (visited on
05/28/2014).

M. Herlihy and J. E. B. Moss, “Transactional memory: architectural support for lock-free
data structures”, SIGARCH Comput. Archit. News, vol. 21, no. 2, pp. 289-300, May 1993,
1SSN: 0163-5964. DOI: 10.1145/173682.165164. [Online]. Available: http://doi .
acm.org/10.1145/173682.165164.

L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis, B. Hertzberg, M. K.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun, “Transactional memory coherence and
consistency”, SIGARCH Comput. Archit. News, vol. 32, no. 2, pp. 102—, Mar. 2004, 1SSN:

http://dx.doi.org/10.1109/MC.2005.160
http://www.embedded.com/design/mcus-processors-and-socs/4405280/Overcoming-the-embedded-CPU-performance-wall-
http://www.embedded.com/design/mcus-processors-and-socs/4405280/Overcoming-the-embedded-CPU-performance-wall-
http://dx.doi.org/10.1023/A:1025641323400
http://dx.doi.org/10.1023/A:1025641323400
http://dx.doi.org/10.1145/365559.365617
http://doi.acm.org/10.1145/365559.365617
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Frzahw%2Frzahwsynco.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Frzahw%2Frzahwsynco.htm
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=%2Frzahw%2Frzahwsynco.htm
http://dx.doi.org/10.1145/605432.605399
http://dx.doi.org/10.1145/605432.605399
http://doi.acm.org/10.1145/605432.605399
http://doi.acm.org/10.1145/605432.605399
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
http://dx.doi.org/10.1145/173682.165164
http://doi.acm.org/10.1145/173682.165164
http://doi.acm.org/10.1145/173682.165164

108

BIBLIOGRAPHY

[24]
[25]

[26]

0163-5964. poI: 10.1145/1028176.1006711. [Online]. Available: http://doi.acm.
org/10.1145/1028176.1006711.

M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III, “Software transactional memory
for dynamic-sized data structures”, in Proceedings of the Twenty-second Annual Symposium
on Principles of Distributed Computing, ser. PODC 03, Boston, Massachusetts: ACM, 2003,
pp. 92-101, 1sBN: 1-58113-708-7. DOL: 10 .1145/872035.872048. [Online]. Available:
http://doi.acm.org/10.1145/872035.872048.

N. Shavit and D. Touitou, “Software transactional memory”, English, Distributed Comput-
ing, vol. 10, no. 2, pp. 99-116, 1997, 1SSN: 0178-2770. por: 10.1007/s004460050028.
[Online]. Available: http://dx.doi.org/10.1007/s004460050028.

V. Gramoli, R. Guerraoui, and V. Trigonakis, “TM?C: a software transactional memory for
many-cores”, in Proceedings of the 7th ACM Furopean Conference on Computer Systems,
ser. EuroSys 12, Bern, Switzerland: ACM, 2012, pp. 351-364, 1SBN: 978-1-4503-1223-3. DOI:
10.1145/2168836.2168872. [Online]. Available: http://doi.acm.org/10.1145/
2168836.2168872.

S. Dabdoub and S. Tu, “Supporting intel transactional synchronization extensions in gemu”,
[Online]. Available: http://people.csail.mit.edu/stephentu/papers/tsx.pdf
(visited on 05/24/2014).

R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance evaluation of intel® transac-
tional synchronization extensions for high-performance computing”, in Proceedings of SC13:
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis, ACM, 2013, p. 19.

Intel 64 and ia-32 architectures software developer’s manual - volume 3 (3a, 3b & 3c): system
programming guide, 325384-050US, Intel Corporation, Feb. 2007. [Online|. Available: http:
//www.intel.com/content/dam/www/public/us/en/documents/manuals/ 64—
ia—-32-architectures-software-developer-system—-programming-manual -
325384.pdf.

V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware transactional memory in main-
memory databases”, in Proc. of ICDE, 2014.

A. Matveev and N. Shavit, Reduced hardware norec: an opaque obstruction-free and priva-
tizing hytm.

D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii”, in Distributed Computing,
Springer, 2006, pp. 194-208.

K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood, “Logtm: log-based
transactional memory.”, in HPCA, vol. 6, 2006, pp. 254-265.

——, “Logtm: log-based transactional memory”, in Proceedings of the 12th Annual Inter-
national Symposium on High Performance Computer Architecture (HPCA-12), Austin, TX,
Feb. 2006, pp. 258-269.

A. Levy, “Programming with hardware lock elision”, PhD thesis, Tel-Aviv University, 2013.
[Online]. Available: http://mcg.cs.tau.ac.il/papers/amir-levy-msc.pdf.

A. Kleen et al., Glibc, 2013. [Online]. Available: https://github.com/andikleen/
glibc.

J. Reindeirs, Coarse-grained locks and transactional synchronization explained, Jul. 2012.
[Online|. Available: https://software.intel.com/en-us/blogs/2012/02/07/
coarse—grained-locks—and-transactional-synchronization—-explained

(visited on 05/29/2014).

http://dx.doi.org/10.1145/1028176.1006711
http://doi.acm.org/10.1145/1028176.1006711
http://doi.acm.org/10.1145/1028176.1006711
http://dx.doi.org/10.1145/872035.872048
http://doi.acm.org/10.1145/872035.872048
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1145/2168836.2168872
http://doi.acm.org/10.1145/2168836.2168872
http://doi.acm.org/10.1145/2168836.2168872
http://people.csail.mit.edu/stephentu/papers/tsx.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-system-programming-manual-325384.pdf
http://mcg.cs.tau.ac.il/papers/amir-levy-msc.pdf
https://github.com/andikleen/glibc
https://github.com/andikleen/glibc
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained
https://software.intel.com/en-us/blogs/2012/02/07/coarse-grained-locks-and-transactional-synchronization-explained

BIBLIOGRAPHY 109

[27]

28]

[39]

[40]

[41]

[42]

A. Kleen, “Adding lock elision to linux”, in Proceedings of the Linux Plumbers Conference,
Aug. 2012. [Online]. Available: http://halobates.de/adding-lock-elision-to-
linux.pdf.

D. Schwartz-Narbonne, “Hardware transactional memory”, Programming Paradigms for
Concurrency, 2014. [Online]. Available: http://www.cs.nyu.edu/wies/teaching/
ppc-14/material/lecture09.pdf (visited on 05/29/2014).

D. Kanter, “Analysis of haswell’s transactional memory”, Real World Tech, Feb. 2012. [On-
line]. Available: http://www.realworldtech.com/haswell-tm/2/.

Intel® c++ compiler xe 13.1 user and reference guides, 323273-131US, Intel Corpora-
tion, 2013. [Online]. Available: http://software.intel.com/sites/products/
documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-
A462FBC8-37F2-490F-A68B-2FFA8010DERBC.htm.

Intel® 64 and ia-32 architectures optimization reference manual, 248966-029, Intel Cor-
poration, Mar. 2014. [Online]. Available: http: //www . intel .pl/content /dam/
www / public / us / en / documents / manuals / 64 — ia - 32 — architectures -
optimization-manual.pdf (visited on 04/23/2014).

A. Kemper and A. Eickler, Datenbanksysteme: Eine Einfiihrung. Oldenbourg Verlag, 2011.
Atomic transactions in distributed systems. [Online|. Available: http://www. scalus.
eu/files/2012/04/Atomic_Transactions.pdf (visited on 05/29/2014).

A. Kleen, “Scaling existing lock-based applications with lock elision”, ACM Queue, vol.
12, no. 1, 20:20-20:27, Jan. 2014, 1SSN: 1542-7730. DOI: 10.1145/2576966.2579227.
[Online]. Available: http://doi.acm.org/10.1145/2576966.2579227.

——, “Intel® transactional synchronization extensions (intel®) tsx) linux update”, in Pro-
ceedings of the Linuz Plumbers Conference, Aug. 2012. [Online]. Available: http://www.
halobates.de/tsx—-plumbersl3.pdf.

M. E. Thomadakis, “The architecture of the nehalem processor and nehalem-ep smp plat-
forms”, Resource, vol. 3, p. 2, 2011. [Online]. Available: http://elastos.org/redmine/
attachments/download/457/nehalem.pdf.

J. D. Gelas. (Sep. 2012). Making sense of the intel haswell transactional synchronization
extensions, [Online]. Available: http://www.anandtech.com/show/6290/making—
sense-of-intel-haswell-transactional-synchronization—-extensions/4
(visited on 04/23/2014).

Intel, Intel® c++ compiler xe 13.1 user and reference guide, 323273-131US. [Online].
Available: https://software. intel.com/sites/products/documentation/
doclib/iss/2013/compiler/cpp—-1in/GUID-54A84479-DEC6—-4D2F—-9895—
46D278EDA820 . htm (visited on 05/24/2014).

M. D. Wang and M. Burcea, “Intel tsx (transactional synchronization extensions)”, [Online].
Available: http://individual . utoronto.ca/mikedaiwang/tm/ Intel__TSX_
Overview.pdf (visited on 05/24/2014).

R. Dementiev, Ezploring intel® transactional synchronization extensions with intel® soft-
ware development emulator, Intel. [Online|. Available: https: // software . intel .
com/en—-us /blogs /2012 /11 /06 / exploring — intel - transactional —
synchronization-extensions-with-intel-software (visited on 05/24/2014).

J. Reinders. (Feb. 2012). Transactional synchronization in haswell, Intel Corporation, [On-
line]. Available: http://software. intel .com/en-us/blogs/2012/02/07/
transactional-synchronization-in-haswell (visited on 10/11/2013).

A. Kleen, Tsz fallback paths, Jun. 2013. [Online]. Available: https://software.intel.
com/en-us/blogs/2013/06/23/tsx-fallback-paths (visited on 06/05/2014).

http://halobates.de/adding-lock-elision-to-linux.pdf
http://halobates.de/adding-lock-elision-to-linux.pdf
http://www.cs.nyu.edu/wies/teaching/ppc-14/material/lecture09.pdf
http://www.cs.nyu.edu/wies/teaching/ppc-14/material/lecture09.pdf
http://www.realworldtech.com/haswell-tm/2/
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-A462FBC8-37F2-490F-A68B-2FFA8010DEBC.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-A462FBC8-37F2-490F-A68B-2FFA8010DEBC.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/compiler/cpp-win/GUID-A462FBC8-37F2-490F-A68B-2FFA8010DEBC.htm
http://www.intel.pl/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.pl/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.pl/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.scalus.eu/files/2012/04/Atomic_Transactions.pdf
http://www.scalus.eu/files/2012/04/Atomic_Transactions.pdf
http://dx.doi.org/10.1145/2576966.2579227
http://doi.acm.org/10.1145/2576966.2579227
http://www.halobates.de/tsx-plumbers13.pdf
http://www.halobates.de/tsx-plumbers13.pdf
http://elastos.org/redmine/attachments/download/457/nehalem.pdf
http://elastos.org/redmine/attachments/download/457/nehalem.pdf
http://www.anandtech.com/show/6290/making-sense-of-intel-haswell-transactional-synchronization-extensions/4
http://www.anandtech.com/show/6290/making-sense-of-intel-haswell-transactional-synchronization-extensions/4
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
https://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
http://individual.utoronto.ca/mikedaiwang/tm/Intel_TSX_Overview.pdf
http://individual.utoronto.ca/mikedaiwang/tm/Intel_TSX_Overview.pdf
https://software.intel.com/en-us/blogs/2012/11/06/exploring-intel-transactional-synchronization-extensions-with-intel-software
https://software.intel.com/en-us/blogs/2012/11/06/exploring-intel-transactional-synchronization-extensions-with-intel-software
https://software.intel.com/en-us/blogs/2012/11/06/exploring-intel-transactional-synchronization-extensions-with-intel-software
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
https://software.intel.com/en-us/blogs/2013/06/23/tsx-fallback-paths
https://software.intel.com/en-us/blogs/2013/06/23/tsx-fallback-paths

110

BIBLIOGRAPHY

[43]

[56]

[57]

[58]

M. Brooker, Hardware lock elision on haswell, Dec. 2013. [Online]. Available: http: //
brooker.co.za/blog/2013/12/14/intel-hle.html (visited on 06/02/2014).
“Intel pentium 4 3.06ghz cpu with hyper-threading technology, Killing two birds with a
stone...”, X-bit labs, 2002. [Online]. Available: http://www.xbitlabs.com/articles/
cpu/display/pentium4-3066.html (visited on 03/22/2014).

A. Kleen, private communication, Mar. 2014.

A. C. de Melo, “The new linux’perf’tools”, in Slides from Linux Kongress, 2010. [Online].
Available: http://www . linux—-kongress .org/2010/slides/1k2010-perf -
acme.pdf (visited on 06/18/2014).

R. A. Vitillo, “Performance tools developments”, in Future computing in particly physics,
Jun. 2011. [Online]. Available: http://indico.cern.ch/event/141309/session/
4/contribution/20/material/slides/0.pdf (visited on 05/19/2014).

Perf: linuz profiling with performance counters, 2013. [Online]. Available: https://perf.
wiki.kernel.org/index.php/Tutorial (visited on 02/25/2014).

A. Kleen. (Mar. 2013). Intel(r) transactional synchronization extensions (intel(r) tsx) profil-
ing with linux perf, [Online]. Available: http://software.intel.com/en-us/blogs/
2013/05/03/intelr-transactional-synchronization—-extensions—intelr—
tsx-profiling-with-linux-0 (visited on 03/04/2014).

K. Lai, private communication, Feb. 2014.

A. Kleen. (May 2013). Using hle and rtm with older compilers with tsx-tools, Intel Corpo-
ration, [Online|. Available: https://software.intel.com/en-us/blogs/2013/
05/20/using-hle-and-rtm-with-older-compilers-with-tsx-tools (visited
on 10/11/2013).

X86 assembly/data transfer, Wikibooks, Dec. 2013. [Online]. Available: http: / /en .
wikibooks.org/w/index.php?title=X86_Assembly/Data_Transfersoldid=
2596434 (visited on 03/05/2014).

C. L. Coleman, Using inline assembly with gcc, 1988.

0. S. (Intel), The inline asm containing macro for semicolon causes the intel c++ compiler
to hang, Jan. 2012. [Online]. Available: https : //software . intel . com/de—de/
articles/the—-inline—-asm-containing-macro—- for—-semicolon-causes—
the-intel-c-compiler—to-hang (visited on 05/20/2014).

F. S. Foundation, Gnu gcc manual. extended asm - assembler instructions with ¢ expres-
sion operands, 2005. [Online|. Available: https://gcc.gnu.org/onlinedocs/gcc/
Extended-Asm.html (visited on 05/20/2014).

L. S., Intel Corporation, Feb. 2005. [Online]. Available: http://software.intel.com/
en-us/forums/topic/309231 (visited on 03/07/2014).

J. Pierce and T. Mudge, “Wrong-path instruction prefetching”, in Microarchitecture, 1996.
MICRO-29. Proceedings of the 29th Annual IEEE/ACM International Symposium on, Dec.
1996, pp. 165-175. DOL: 10.1109/MICRO.1996.566459.

A. Kleen. (Mar. 2013). Intel(r) transactional synchronization extensions (intel(r) tsx) profil-
ing with linux perf, Intel Corporation, [Online]. Available: https://software.intel.
com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-—
extensions—intelr-tsx-profiling-with-linux—0 (visited on 04/21/2014).

C. Lin, “Fully associative cache”, 2003, [Online]. Available: http://www.cs.umd.edu/
class/sum2003/cmsc311/Notes/Memory/fully.html (visited on 05/02/2014).
——, “Set associative cache”, 2003, [Online|. Available: http://www . cs . umd.edu/
class/sum2003/cmsc311/Notes/Memory/set .html (visited on 05/02/2014).

http://brooker.co.za/blog/2013/12/14/intel-hle.html
http://brooker.co.za/blog/2013/12/14/intel-hle.html
http://www.xbitlabs.com/articles/cpu/display/pentium4-3066.html
http://www.xbitlabs.com/articles/cpu/display/pentium4-3066.html
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://www.linux-kongress.org/2010/slides/lk2010-perf-acme.pdf
http://indico.cern.ch/event/141309/session/4/contribution/20/material/slides/0.pdf
http://indico.cern.ch/event/141309/session/4/contribution/20/material/slides/0.pdf
https://perf.wiki.kernel.org/index.php/Tutorial
https://perf.wiki.kernel.org/index.php/Tutorial
http://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-profiling-with-linux-0
http://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-profiling-with-linux-0
http://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-profiling-with-linux-0
https://software.intel.com/en-us/blogs/2013/05/20/using-hle-and-rtm-with-older-compilers-with-tsx-tools
https://software.intel.com/en-us/blogs/2013/05/20/using-hle-and-rtm-with-older-compilers-with-tsx-tools
http://en.wikibooks.org/w/index.php?title=X86_Assembly/Data_Transfer&oldid=2596434
http://en.wikibooks.org/w/index.php?title=X86_Assembly/Data_Transfer&oldid=2596434
http://en.wikibooks.org/w/index.php?title=X86_Assembly/Data_Transfer&oldid=2596434
https://software.intel.com/de-de/articles/the-inline-asm-containing-macro-for-semicolon-causes-the-intel-c-compiler-to-hang
https://software.intel.com/de-de/articles/the-inline-asm-containing-macro-for-semicolon-causes-the-intel-c-compiler-to-hang
https://software.intel.com/de-de/articles/the-inline-asm-containing-macro-for-semicolon-causes-the-intel-c-compiler-to-hang
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html
http://software.intel.com/en-us/forums/topic/309231
http://software.intel.com/en-us/forums/topic/309231
http://dx.doi.org/10.1109/MICRO.1996.566459
https://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-profiling-with-linux-0
https://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-profiling-with-linux-0
https://software.intel.com/en-us/blogs/2013/05/03/intelr-transactional-synchronization-extensions-intelr-tsx-profiling-with-linux-0
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/fully.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/fully.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/set.html
http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Memory/set.html

BIBLIOGRAPHY 111

[61]

[62]

[63]

J. Schlichter, Grundlagen: betriebssysteme und systemsoftware (gbs), Sep. 2007. [Online].
Available: http://wwwll.in.tum.de/dokument .php?id_dokument=3209.

Intel® transactional synchronization extensions (intel® tsz) programming considerations,
Intel Corporation, 2013. [Online|. Available: http://software.intel.com/sites/
products / documentation/doclib /iss /2013 / compiler /cpp—-1lin/ GUID -
54A84479-DEC6-4D2F-9895-46D278EDA820 .htm.

K. Moiseev, A. Kolodny, and S. Wimer, “Timing-aware power-optimal ordering of signals”,
ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 4, 65:1-65:17, Oct. 2008, 1SSN: 1084-
4309. DOI: 10.1145/1391962.1391973. [Online]. Available: http://doi.acm.org/
10.1145/1391962.1391973.

D. Porobic, I. Pandis, M. Branco, P. Téziin, and A. Ailamaki, “Oltp on hardware islands”,
CoRR, vol. abs/1208.0227, 2012. [Online]. Available: http://arxiv.org/abs/1208.
0227.

R. M. Stallman and the GCC Developer Community, Using concurrency, GNU press, 2014.
[Online]. Available: http://gcc.gnu.org/onlinedocs/libstdc++/manual /
using_concurrency.html (visited on 05/12/2014).

The gnu c library (glibc), Aug. 2013. [Online]. Available: http : / /www . gnu . org/
software/libc/libe.html (visited on 07/01/2014).

J. Corbet, A turning point for gnu libc, Mar. 2012. [Online|. Available: https://lwn.
net/Articles/488847/ (visited on 07/01/2014).

J. S. Myers, Gnu c library development and maintainers, Mar. 2012. [Online]. Available:
http://sourceware.org/ml/libc-alpha/2012-03/msg01040.html (visited on
07/01/2014).

K. H. Hyouck, “How main() is executed on linux”, Linuz Gazette, vol. 84, Nov. 2012. [Online].
Available: http://linuxgazette.net/84/hawk.html (visited on 10/08/2013).

O. Corporation, Mysql enterprise scalability, 2014. [Online]. Available: http : / / www .
mysqgl.com/products/enterprise/scalability.html (visited on 07/03/2014).
solidIT consulting & software development GmbH, Db-engines ranking. [Online]. Available:
http://db-engines.com/en/ranking (visited on 06/10/2014).

J. M. Hellerstein, M. Stonebraker, and J. Hamilton, Architecture of a database system. Now
Publishers Inc, 2007, vol. 1.

P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency control and recovery in
database systems. Addison-wesley New York, 1987, vol. 370.

T. Haerder and A. Reuter, “Principles of transaction-oriented database recovery”, ACM
Comput. Surv., vol. 15, no. 4, pp. 287-317, Dec. 1983, 1ssN: 0360-0300. DOI1: 10.1145/
289.291. [Online]. Available: http://doi.acm.org/10.1145/289.291.

A. Thomasian and I. K. Ryu, “Performance analysis of two-phase locking”, Software Engi-
neering, IEEE Transactions on, vol. 17, no. 5, pp. 386-402, May 1991, 1sSN: 0098-5589. DOTI:
10.1109/32.90443.

A. Thomasian and E. Rahm, “A new distributed optimistic concurrency control method and
a comparison of its performance with two-phase locking”, in Distributed Computing Systems,
1990. Proceedings., 10th International Conference on, 1990, pp. 294-301. por: 10.1109/
ICDCS.1990.8929¢6.

eXcelon Corporation, Controlling concurrency, 2000. [Online]. Available: http: //www .
cslab.uky.edu/apps/odocs/osji/apiug/6n_mvcc.htm (visited on 06/14/2014).
S. Faller, “Multiversion concurrency control”, 2009. [Online]. Available: http : / / www .
inf.uni-konstanz.de/dbis/teaching/ss09/tx/Sebastian.pdf (visited on
06/14/2014).

http://www11.in.tum.de/dokument.php?id_dokument=329
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
http://software.intel.com/sites/products/documentation/doclib/iss/2013/compiler/cpp-lin/GUID-54A84479-DEC6-4D2F-9895-46D278EDA820.htm
http://dx.doi.org/10.1145/1391962.1391973
http://doi.acm.org/10.1145/1391962.1391973
http://doi.acm.org/10.1145/1391962.1391973
http://arxiv.org/abs/1208.0227
http://arxiv.org/abs/1208.0227
http://gcc.gnu.org/onlinedocs/libstdc++/manual/using_concurrency.html
http://gcc.gnu.org/onlinedocs/libstdc++/manual/using_concurrency.html
http://www.gnu.org/software/libc/libc.html
http://www.gnu.org/software/libc/libc.html
https://lwn.net/Articles/488847/
https://lwn.net/Articles/488847/
http://sourceware.org/ml/libc-alpha/2012-03/msg01040.html
http://linuxgazette.net/84/hawk.html
http://www.mysql.com/products/enterprise/scalability.html
http://www.mysql.com/products/enterprise/scalability.html
http://db-engines.com/en/ranking
http://dx.doi.org/10.1145/289.291
http://dx.doi.org/10.1145/289.291
http://doi.acm.org/10.1145/289.291
http://dx.doi.org/10.1109/32.90443
http://dx.doi.org/10.1109/ICDCS.1990.89296
http://dx.doi.org/10.1109/ICDCS.1990.89296
http://www.cslab.uky.edu/apps/odocs/osji/apiug/6n_mvcc.htm
http://www.cslab.uky.edu/apps/odocs/osji/apiug/6n_mvcc.htm
http://www.inf.uni-konstanz.de/dbis/teaching/ss09/tx/Sebastian.pdf
http://www.inf.uni-konstanz.de/dbis/teaching/ss09/tx/Sebastian.pdf

112

BIBLIOGRAPHY

[79]

[80]

[81]

J. Thijssen, Innodb isolation levels, Dec. 2010. [Online]. Available: https : / / www .
adayinthelifeof .nl/2010/12/20/innodb-isolation-levels/ (visited on
06/10/2014).

C. Shallahamer, Locks and latches...what a difference!, Oct. 2010. [Online|. Available:
http://shallahamer - orapub . blogspot . com.au/2010/10/ locks-and-
latcheswhat-difference.html (visited on 06/10/2014).

H. Jung, H. Han, A. Fekete, U. R6hm, and H. Y. Yeom, “Performance of serializable snap-
shot isolation on multicore servers”, in DASFAA (2), W. Meng, L. Feng, S. Bressan, W.
Winiwarter, and W. Song, Eds., ser. Lecture Notes in Computer Science, Springer, 2013,
pp. 416430, 1SBN: 978-3-642-37449-4, 978-3-642-37450-0. [Online]. Available: http://dx.
doi.org/10.1007/978-3-642-37450-0_31.

Oracle, Mysql 5.5 reference manual. the myisam storage engine, 2010. [Online|. Available:
http://dev.mysqgl.com/doc/refman/5.5/en/myisam—-storage—engine.html
(visited on 06/10/2014).

Rackspace, Mysql engines - myisam vs innodb, May 2013. [Online|. Available: http: //
www . rackspace.com/knowledge_center/article/mysgl-engines—-myisam—
vs—innodb (visited on 06/10/2014).

Y. Yang, Mysql engines: innodb vs. myisam — a comparison of pros and cons, Sep. 2009.
[Online|. Available: http://www.kavoir.com/2009/09/mysgl-engines—innodb-
vs-myisam-a-comparison-of-pros—and-cons.html (visited on 06/10/2014).

P. Zaitsev, Should you move from myisam to innodb ¢, Jan. 2009. [Online]. Available: http:
//www .mysqglperformanceblog.com/2009/01/12/should-you-move— from—
myisam-to-innodb/ (visited on 06/10/2014).

Oracle, Mysql 5.6 reference manual. the innodb transaction model and locking, 2012. [Online].
Available: http://dev.mysqgl.com/doc/refman/5.6/en/innodb-transaction—
model.html (visited on 06/10/2014).

——, Mysql 5.6 reference manual. innodb lock modes, 2012. [Online]. Available: http :
//dev.mysqgl.com/doc/refman/5.6/en/innodb-lock-modes.html (visited on
06/11/2014).

A. Gurusami, Introduction to transaction locks in innodb storage engine, May 2013. [Online].
Available: https://blogs.oracle.com/mysglinnodb/entry/introduction_
to_transaction_locks_in (visited on 05/22/2014).

B. Schwartz, P. Zaitsev, and V. Tkachenko, High Performance MySQL: Optimization, Back-
ups, and Replication. " O’Reilly Media, Inc.", 2012.

Oracle, Mysql internals manual. innodb page structure. [Online]. Available: http://dev.
mysqgl . com/doc/ internals/en/ innodb - page - structure . html (visited on
05/22/2014).

——, Innodb 1.1 for mysql 5.5 user’s guide. integration with the mysql performance schema,
2012. [Online]. Available: http://dev.mysql.com/doc/innodb/1.1/en/innodb-
performance-schema.html (visited on 06/11/2014).

C. Calender, Mitigating the effect of metadata lock (mdl) contention, Jul. 2013. [Online].
Available: http://www.chriscalender.com/?p=1323 (visited on 05/28/2014).

C. Schneider, Using tmpfs for mysql’s tmpdir, Sep. 2009. [Online]. Available: http : / /
everythingmysqgl . ning.com/profiles/blogs/using-tmpfs—-for-mysqgls-
tmpdir (visited on 06/11/2014).

2bits.com, Inc., Reduce your server’s resource usage by moving mysql temporary directory
to tmpfs, Mar. 2013. [Online]. Available: http://2bits.com/articles/reduce-

https://www.adayinthelifeof.nl/2010/12/20/innodb-isolation-levels/
https://www.adayinthelifeof.nl/2010/12/20/innodb-isolation-levels/
http://shallahamer-orapub.blogspot.com.au/2010/10/locks-and-latcheswhat-difference.html
http://shallahamer-orapub.blogspot.com.au/2010/10/locks-and-latcheswhat-difference.html
http://dx.doi.org/10.1007/978-3-642-37450-0_31
http://dx.doi.org/10.1007/978-3-642-37450-0_31
http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html
http://www.rackspace.com/knowledge_center/article/mysql-engines-myisam-vs-innodb
http://www.rackspace.com/knowledge_center/article/mysql-engines-myisam-vs-innodb
http://www.rackspace.com/knowledge_center/article/mysql-engines-myisam-vs-innodb
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.kavoir.com/2009/09/mysql-engines-innodb-vs-myisam-a-comparison-of-pros-and-cons.html
http://www.mysqlperformanceblog.com/2009/01/12/should-you-move-from-myisam-to-innodb/
http://www.mysqlperformanceblog.com/2009/01/12/should-you-move-from-myisam-to-innodb/
http://www.mysqlperformanceblog.com/2009/01/12/should-you-move-from-myisam-to-innodb/
http://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-model.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-transaction-model.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-lock-modes.html
http://dev.mysql.com/doc/refman/5.6/en/innodb-lock-modes.html
https://blogs.oracle.com/mysqlinnodb/entry/introduction_to_transaction_locks_in
https://blogs.oracle.com/mysqlinnodb/entry/introduction_to_transaction_locks_in
http://dev.mysql.com/doc/internals/en/innodb-page-structure.html
http://dev.mysql.com/doc/internals/en/innodb-page-structure.html
http://dev.mysql.com/doc/innodb/1.1/en/innodb-performance-schema.html
http://dev.mysql.com/doc/innodb/1.1/en/innodb-performance-schema.html
http://www.chriscalender.com/?p=1323
http://everythingmysql.ning.com/profiles/blogs/using-tmpfs-for-mysqls-tmpdir
http://everythingmysql.ning.com/profiles/blogs/using-tmpfs-for-mysqls-tmpdir
http://everythingmysql.ning.com/profiles/blogs/using-tmpfs-for-mysqls-tmpdir
http://2bits.com/articles/reduce-your-servers-resource-usage-moving-mysql-temporary-directory-ram-disk.html
http://2bits.com/articles/reduce-your-servers-resource-usage-moving-mysql-temporary-directory-ram-disk.html

BIBLIOGRAPHY 113

[101]

your-servers—resource—-usage-moving-mysqgl—-temporary—-directory—-ram-—
disk.html (visited on 06/11/2014).

T. O. Group, Pthread_mutexattr_settype(3) - linuz man page. [Online]. Available: http:
//linux.die.net/man/3/pthread_mutexattr_settype (visited on 05/28/2014).
“Teee standard for information technology - portable operating system interface (posix). shell
and utilities”, IEEE Std 1003.1, 2004 Edition The Open Group Technical Standard. Base
Specifications, Issue 6. Includes IEEE Std 1003.1-2001, IEEE Std 1003.1-2001/Cor 1-2002
and IEEE Std 1003.1-2001/Cor 2-2004. Shell, 2004. DOI: 10 .1109/IEEESTD . 2004 .
94572.

Oracle, Mysql internals manual. 4.4.6.2 how to control compiler flags. [Online]. Available:
http://dev.mysql.com/doc/internals/en/controlling-compiler-flags.
html (visited on 05/28/2014).

M. Snir and J. Yu, “On the theory of spatial and temporal locality”, University of Illinois ar
Urbana-Champaign, Tech. Rep., Jul. 2005. [Online|. Available: https://www.ideals.
illinois.edu/bitstream/handle/2142/11077/0n%20the%20Theory%200f%
20Spatial%20and%20Temporal%20Locality.pdf (visited on 10/11/2013).

Using the rdtsc instruction for performance monitoring, Intel Corporation, 1997. [Online].
Available: http://www.ccsl.carleton.ca/~jamuir/rdtscpml.pdf (visited on
04/29/2014).

G. Paoloni, How to benchmark code execution times on intel® ia-32 and ia-64 instruction
set architectures, Intel Corporation, Sep. 2010. [Online]. Available: http://www.intel.
com/content /dam/www/public/us/en/documents/white-papers/ia-32-ia-
64-benchmark-code-execution-paper.pdf (visited on 04/29/2014).

Proceedings of the Linux Plumbers Conference, Aug. 2012.

http://2bits.com/articles/reduce-your-servers-resource-usage-moving-mysql-temporary-directory-ram-disk.html
http://2bits.com/articles/reduce-your-servers-resource-usage-moving-mysql-temporary-directory-ram-disk.html
http://2bits.com/articles/reduce-your-servers-resource-usage-moving-mysql-temporary-directory-ram-disk.html
http://linux.die.net/man/3/pthread_mutexattr_settype
http://linux.die.net/man/3/pthread_mutexattr_settype
http://dx.doi.org/10.1109/IEEESTD.2004.94572
http://dx.doi.org/10.1109/IEEESTD.2004.94572
http://dev.mysql.com/doc/internals/en/controlling-compiler-flags.html
http://dev.mysql.com/doc/internals/en/controlling-compiler-flags.html
https://www.ideals.illinois.edu/bitstream/handle/2142/11077/On%20the%20Theory%20of%20Spatial%20and%20Temporal%20Locality.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/11077/On%20the%20Theory%20of%20Spatial%20and%20Temporal%20Locality.pdf
https://www.ideals.illinois.edu/bitstream/handle/2142/11077/On%20the%20Theory%20of%20Spatial%20and%20Temporal%20Locality.pdf
http://www.ccsl.carleton.ca/~jamuir/rdtscpm1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf

	Introduction
	Intel TSX
	Restricted Transactional Memory
	Hardware Lock Elision
	Linux perf Tool
	Preliminaries
	Basic profiling
	Event profiling
	Recording and reporting profiles

	Micro-Usage of HLE
	Lock variable type
	HLE function call
	Locking algorithm
	TAS implementation
	Resulting combined function

	Evaluation of Core Performance Characteristics
	Necessity to keep the mutex in the read-set
	Scope of application
	Transaction size
	Cache Associativity
	Transaction duration
	Transaction Nesting
	Overhead

	Isolated use cases
	Closed banking system
	Shared counter
	Doubly linked List
	Hashmap

	Linking with a HTM-enabled glibc
	Installation
	Usage

	Database Concurrency Control using Intel TSX
	InnoDB internals
	Multi-granularity locking
	Transaction locks
	Function hierarchy

	Modifications to apply HTM
	Targeted functions
	RTM implementation with fallback path
	Relinking with the HTM-enabled glibc

	Evaluation of HTM in MySQL/InnoDB
	MySQL configuration
	Benchmarking with the txbench
	Comparison and analysis of the applied changes

	Conclusion
	Conclusions on Intel TSX and its application in a Database Concurrency Control
	Lessons learned

	Appendix Environment
	Server Hardware
	Operating system

	Appendix Technical pitfalls
	HTM-enabled glibc
	Linking MySQL with custom glibc

	Appendix Omitted Benchmarks and figures
	Memory alloation
	Transaction size with randomized access
	Access range
	Comparison of sequential and random array access

	Locking Overhead with data
	Partitioning the data access range between threads
	Notes on functions defined in the hle-emulation header
	Different random generators within the Closed Bank
	Hashmap
	Logically-grouped call-graph of InnoDB entities

	Appendix Open Questions
	Abort costs
	List with four threads

	Bibliography

