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Goal (broadly): Model Natural (Human) Intelligence
and the Underlying Neural Mechanisms
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Goal (today): Model the Human Language System
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Brain-Score Vision (neural and behavioral alignment)
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What kinds of models could align with
the human language system?

DenseNet-169

In sensory cortex:

best mobilenet :"'.:.
best basenet .ot~ * Artificial Neural Networks (ANNs) are the
et leading class of models for explaining
o, o alexnet . .
. brain and behavior
* ANNs make predictions for any visual
input and work well for real-world stimuli
* ANNs with higher task performance
generally are more aligned to brain and
behavior
r=0.92
20 40 60 80 Schrimpf*, Kubilius*, et al. 2018 | Kubilius*, Schrimpf*, et al. 2019
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Imagenet performance ( /o tOp 1) see also www.brain-score.org [ Yamins*, Hong*, et al. 2013, 2014 |

Khaligh-Razavi & Kriegeskorte 2014 | Zhuang et al. 2017 | Kell et al. 2018


http://www.brain-score.org/

Modeling higher cognition

High-level

Perception BENREGEN: :
D 5UdS reasoning

Artificial neural networks have worked
well in modeling sensory cortex — could
they also predict higher cognition?



The human language network

working definition:

a set of left-lateralized regions on the lateral
surfaces of frontal and temporal cortex that
support high-level language processing.

Language

[ Sentences ] > [ Lists of nonwords j

Fedorenko and Thompson-Schill 2014  Braga, DiNicola and Buckner 2019



The human language network
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Key signature: stronger response to sentences than lists of unconnected words

Fedorenko, Behr and Kanwisher 2011 | Fedorenko et al. 2020



The human language network

courtesy of Idan Blank



What are the mechanisms underlying
human language comprehension?

the dog 1s taking
a bath

"meaning"




What are the mechanisms underlying
numan language comprehension?

stimulus
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Data target: human neural recordings




Data target: human neural recordings

Pereira et al. 2018 VMRl @

627 sentences x 13,517 voxels in 10 subjects

Beekeeping encourages the conservation of local
habitats. | Itis in every beekeeper's interest ...

Fedorenko et al. 2016 ECoG

416 words x 97 electrodes in 5 subjects
ALEX | WAS | TIRED | SO | HE | TOOK [ A | NAP

Blank et al. 2014 fMmR] '@
1,317 story fragments x 60 fROIs in 5 subjects

If you were to journey to the | North of England, you
would come to a valley | that is surrounded by moors

would find the city of Bradford, | ...
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Toward a universal decoder of linguistic meaning
from brain activation
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Neural correlate of the construction of sentence meaning
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A functional dissociation between language and multiple-demand systems

revealed in patterns of BOLD signal fluctuations

Idan Blank, Nancy Kanwisher, and Evelina Fedorenko
Brain and Cognitive Sciences Depariment and McGovern Institute of Brain Research, Massachusetts Institute of Technology,
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Blank 1, Kanwisher N, Fedorenko E. A functional dissociation
: * * S ' “revealed in patterns
N105-1118, 2014,

Data are 'not endugh 013t
as high as | mountains. It is in this [ valley where you' for model testing. Need

1-level cognitive
minate this ques-
ectively engaged
-demand”™ (MD)
iks. Nonetheless,
mnd MD systems
with a synergistic
define candidate
amdividually (using

Dosenbach et al. 2008; Duncan 2010; Duncan and Owen 2000;
Fedorenko et al. 2013; Miller and Cohen 2001), which does not
overlap with the classic fronto-temporal language system.
Nonetheless, the dissociation between a putatively language-
specific system and this domain-general MD system remains
controversial (Blumstein and Amso 2013; Thompson-Schill et
al. 2005).

To test for this dissociation, here, we compared the blood
oxygenation level-dependent (BOLD) signal time courses of
candidate language and MD regions by synergistically com-
bining two functional MRI (fMRI) methods: functional local-
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Quantifying match-to-brain: Benchmarking

stimulus stimulus

present EXPERIMENTAL present
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record ‘ continuum ’ \Iiil/
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Quantifying match-to-brain: Benchmarking

We only care about best-

matching model (for now) |

how close
are we?

differentiate
models

match-to-brain




Models tested (n=43)

Embedding type models: Glo
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Models tested (n=43)

Language Modeling

Embedding type models: GloVe, word2vec, topicETM #es@

Alaska is about

Alaska is about twelve

Recurrent networks: skip-thoughts, LSTM Im_1b T —
Alaska Alaska is about twelve times larger
l Alaska is about twelve times larger than
LSTM Ce” j Alaska is about twelve times larger than New

Alaska is about twelve times larger than New York

A 4

LSTM cell j
|
- I

[ | — .
has what no ... is ...

Image from https://www.quora.com/What-is-a-masked-
Jozefowicz, vinyals, Schuster, Shazeer, Wu 2016 language-model-and-how-is-it-related-to-BERT



Models tested (n=43)

Embedding type models: GloVe, word2vec, topicETM

Recurrent networks: skip-thoughts, LSTM Im_1b
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Treating models as experimental subjects

stimulus

T

observed data

Beekeeping encourages the
conservation of local habitats.

It is in every beekeeper's
interest to conserve local
plants that produce pollen.




Neural benchmarks

sentences

Brain recordings Model units




Neural benchmarks

neural predictivity

Brain recordings Model units

sentences

fit

regression weights

.

correlation predict held-out

A
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Yamins*, Hong*, et al. (PNAS 2014)

Schrimpf*, Kubilius*, et al. (bioRxiv 2018)



https://www.pnas.org/doi/10.1073/pnas.1403112111
https://www.biorxiv.org/content/10.1101/407007

Stimuli

Experimental Participants

Comparative

H "B eekeeping encourages the conservation of local
Pereira2018 habitats. It is in every beekeeper's interest..."

Fedorenko2016  “Alex was tired so he took a nap.”

“If you were to joumey to the North of England, you
Blank2014 would come to a valley that is surrounded by moors
as high as mountains. It is in this valley where you...”

present

Human Brains (B) Models (M)

record
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GloVe voxel-wise predictivity scores

Aggregate scores:
median over voxels
and subjects
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Certain language models predict human language recordings

gpt2-xI hits our
estimated ceiling
for this benchmark
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GPT2-xl accurately predicts a large portion of voxels
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Language Models predict human language recordings
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Control: moc

correlated, a

within Pereira2018

el scores across benchmarks are
though differences exist

(some subject overlap, similar experiments)

Scores generalize
to a good extent

Pereira2018 = Fedorenko2016

1. 4
1/
r= .94 L // 1'
— L 7
"8 0ol r=.50
= 3 =8
L ° o
~— o ° 7’
o|-6 o 0% gl S
8 I ‘/// é 0
N $7 7 7]
© 3e =
tla ‘;/ 8'4
g ’ @
() A L
o e 2 s
/’ ' -~
2 > // /,/
/// O ” ®
0 7 .0 2
.0 2 4 6 8 1.

PeréﬁaZOlé(EprZ)

7 L ]
//
,/
A
”
/,/,..
° P L i
!
/’/. ?
®
L ]
[ ]
L ]
e
4 .6 .8 1.
Pereira?

Blank2014
o

I

2

.0

Pereira2018 = Blank2014

”
r=.6l L
”
rd

’

”

e

s
Ld
”
”
e
”
”
e
s
”
7’
PR

s °
-~ ®

/l 4 ®

’ s »
” L S ®
P o 0% L |
P @

.0

But there are also differences,

2 4 .6 .8 1.
Pereira2018

making each individual
benchmark valuable



What explains the model differences?

Neural predictivity

Goal 1: possible explanation
why some models are better
than others (hinting at
optimization in the brain)

Goal 2: if x-axis is easier to
optimize than y-axis, we can
more efficiently improve models

Normative Variable

>



Next-Word Prediction on WikiText-2

= Gold dollar =

The gold dollar or gold one @-@ dollar piece
was a coin struck as a regular issue by the
United States Bureau of the Mint from 1849
to 1889 . The coin had three types over its
lifetime , all designed by Mint Chief Engraver
James B. Longacre . The Type 1 issue had

WikiText-2

Train Valid Test
Articles 600 60 60
Tokens 2,088,628 217646 245569
Vocab 33,278
OoV 2.6%

afternoon | alaska | animation | article | ...

Merity et al. 2016

Alaska

Alaska is

Alaska is about

Alaska is about twelve

Alaska is about twelve times

Alaska is about twelve times larger

Alaska is about twelve times larger than
Alaska is about twelve times larger than New

Alaska is about twelve times larger than New York

h1,| h2,l hn,l

Iearnb/veight matrix

Surprisal of seeing
actual next word:
perplexity =
exp(NLL Loss)



The better mode
the more brain-|i

!

!

Neural alignment to the -

multiple brain datasets

k=4

human language system

1.

.8

.6

<e they are

s can predict the next word,

Schrimpf et al. (PNAS 2021)



https://www.pnas.org/content/118/45/e2105646118

The better models can predict the next word,
the more brain-like they are
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https://www.pnas.org/content/118/45/e2105646118

What about other language tasks?

*IGLUE

9 “General Language Understanding Evaluation” tasks:

Sentence grammaticality (ColLa)
Sentence sentiment (SST-2)

Semantic similarity (QQP, MRPC, STS-B)
Entailment (MNLT, RTE)
Question-answer coherence (QNLI)



Next-Word Prediction performance selectively
correlates with neural predictivity
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s any of this behaviorally relevant?

Neural predictivity




s any of this behaviorally relevant?

Behavioral predictivity
O




Behavioral target: human reading times

Futrell et al. 2018
10256 words x 179 subjects

If | you [ were | to [ journey | to | the |
North | of | England, | you | would | come
[ to | a [ valley | that | is | surrounded |
by | moors [ as | high | as | mountains. [
It [ is [ in [ this [ valley | where | you |
would [ find [ the | city [ of | Bradford, |
where [ once | a | thousand [ spinning | ...

Treat reading times as representation target

The Natural Stories Corpus

Richard Futrell', Edward Gibson', Harry J. Tily?, Idan Blank,
Anastasia Vishnevetsky', Steven T. Piantadosi®, and Evelina Fedorenko®®
'MIT Department of Brain and Cognitive Sciences ?Netflix, Inc.
3University of Rochester Department of Brain and Cognitive Sciences
{Massachusetts General Hospital Department of Psychiatry
®Harvard Medical School Department of Psychiatry
{:futrel 1, egibson, iblank, evelina 9}@mi: .edu,
hal.tily@gmail.com, staseyvi@mail.med.upenn.edu
Abstract
It is now a common practice to compare models of human language processing by comparing how well they predict behavioral and
neural measures of processing difficulty, such as reading times, on corpora of rich naturalistic linguistic materials. However, many of
these corpora, which are based on naturally-occurring text, do not contain many of the low-frequency syntactic constructions that are
often required to distinguish between processing theories. Here we describe a new corpus consisting of English texts edited to contain
many low-frequency syntactic constructions while still sounding fluent to native speakers. The corpus is annotated with hand-corrected
Penn Treebank-style parse trees and includes self-paced reading time data and aligned audio recordings. Here we give an overview of
the content of the corpus and release the data.

Keywords: Cognitive modeling, reading time, psycholinguistics



Behavioral scores

Futrell2018
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Neural scores correlate
with Behavioral scores
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Task scores correlate
with Behavioral scores
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behavior, and computation

Neural

Integrative Modeling:
link neural mechanismes,

Schrimpf et al. Neuron 2020

Normalized neural predictivity
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What is the relative importance of evolutionary
and learning-based optimization?

4 ] N
~—> Add & Norm
Feed
Forward
A
\
N Add & Norm
Multi-Head
Attention
A+ 2
kL
Positional @_?
. -+
Encoding
Input
Embedding

J

T

Inputs

Evolution = community optimization over
architectural properties

Experience-dependent learning =~ updating of
weights over training
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LLMs align to the brain’s language system after
developmentally realistic amounts of training

developmentally realistic
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Normalized Predictivity
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We can use brain-aligned LLMs to
noninvasively control neural activity

Record internal
unit activations

Use model to
GPT2 XL response generate predic(tied
responses, yP'¢

I.I--l@

T m
§ - n
GPT2—XL 5}
2 -
= ~1.8M sentences from @
g external text corpora @, W M 1.8M
o B [Units]
g s
B R
553 red :
B%%, B3RREe0s NS yP ypred Drive: | Record brain
05508 i~ S > 9 b e
25 chEpERSRE s 45 [ 250 responses to novel
B85S soEcEERS S8 z2% | : i
S50 0CEGEERS G B.5: ™ Rank predicted Select sentences| sentences in new
B2225ccRENEM= S : B! participants
—— re— y responses sentences. \___/ L
BERT XM T5  ABERT  GPT B | > — > — >=s
E e EN bidir. idi (b (b}
emb. Mlrec B (st . o Om S Supzpstgss:
o) L
S S sentences
I 1.8M o M 1.8M

Tuckute et al. 2023



We can use brain-aligned LLMs to

noninvasively control neural activity
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Sentences identified to elicit minimal
response in the language network

(We were sitting on the couch.
That is such a beautiful picture!
They stood there for a moment.
They went up the stairs together.
Inside was a tiny silver sculpture.
They walked out onto the balcony.

Cas gazed up at the sky.
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Contributions
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Particular LLMs are strong models
of the human language system

Next-word prediction performance relates to

brain and behavioral alignment

The best models can be used to
noninvasively control neural activity

alignment
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