

Goal (broadly): Model Natural (Human) Intelligence and the Underlying Neural Mechanisms

Mechanistic understanding of human intelligence

Future clinical intelligence algorithms applications

Goal (today): Model the Human Language System

Models

performance

What kinds of models could align with the human language system?

In sensory cortex:

- Artificial Neural Networks (ANNs) are the leading class of models for explaining brain and behavior
- ANNs make predictions for any visual input and work well for real-world stimuli
- ANNs with higher task performance generally are more aligned to brain and behavior

Modeling higher cognition

Perception Language
 High-level reasoning

Artificial neural networks have worked well in modeling sensory cortex - could they also predict higher cognition?

The human language network

working definition:
 a set of left-lateralized regions on the lateral surfaces of frontal and temporal cortex that support high-level language processing.

Language

Perceptually matched control

Sentences

 Lists of nonwords
The human language network

the dog is taking a bath
dap drello smop ub plid kav

Key signature: stronger response to sentences than lists of unconnected words

The human language network

What are the mechanisms underlying human language comprehension?
the dog is taking
a bath

"meaning"

What are the mechanisms underlying human language comprehension?

stimulus

MAGIC

> Want to find the neural mechanisms that predict our data

Data target: human neural recordings

fMRI

ECoG

Data target: human neural recordings

Pereira et al. 2018 fMRI ©

627 sentences $\times 13,517$ voxels in 10 subjects Beekeeping encourages the conservation of local habitats. | It is in every beekeeper's interest ...

Fedorenko et al. 2016 ECoG

416 words x 97 electrodes in 5 subjects ALEX | WAS | TIRED | SO | HE | TOOK | A | NAP

Blank et al. 2014 fMRI ©

1,317 story fragments x 60 fROIs in 5 subjects If you were to journey to the | North of England, you would come to a valley | that is surrounded by moors as high as | mountains. It is in this | valley where you would find the city of Bradford, | ...

nature
 COMMUNICATIONS

ARTICLE

Toward a universal decoder of linguistic meaning from brain activation

Neural correlate of the construction of sentence meaning
 and Nancy Kanwisher, ${ }^{9}$
Deparatment of Psychiatry, Harvard Medical School, Boston, MA 02115; ${ }^{\text {b }}$ Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; Department of speech, Language, and Hearing sciences, Boston Univesity, Boston, MA O2215; "National Center for Adaptive Neurotechnologies, Wadsworth Center, New
Department of Biom
Institute for Brat Brain Rest
nstitute for Brain Res

The neural processt
stand this sentence A functional dissociation between language and multiple-demand systems very rapidly, and c_{e} revealed in patterns of BOLD signal fluctuations
discovering the pre neural events. How measure of senten resolution. Here we ings from the surfa
indexed by γ-powe sentence as people when people rea higher cognitive d
of generic attentic Brain and Cognitive Sciences Department and McGovern Institute of Brain and Cogniive Sciences
Cambridge, Massachusetss

$$
\text { Submited 13 December 2013: accepled in final form } 27 \text { May } 2014
$$

ectively engaged
-demand" (MD)
 vith a synergistic
define candidate

Dosenbach et al. 2008; Duncan 2010; Duncan and Owen 2000; Fedorenko et al. 2013; Miller and Cohen 2001), which does no overlap with the classic fronto-temporal language system.
Nonetheless, the dissociation between a putatively languageNonetheless, the dissociation between a putatively languae
specific system and this domain-general MD system remain controversial (Blumstein and Amso 2013; Thompson-Schill et al. 2005).
xygenation level-dependent (BOLD) signal time courses candidate language and MD regions by synergistically combining two functional MRI (fMRI) methods: functional local-

Data are not enough for model testing. Need accessible benchmarks

Quantifying match-to-brain: Benchmarking

Quantifying match-to-brain: Benchmarking

We only care about bestmatching model (for now)

Models tested ($n=43$)

Embedding type models: GloVe, word2vec, topicETM

Models tested ($n=43$)

Language Modeling
Embedding type models: GloVe, word2vec, topicETM

Alaska is

Alaska is about
Alaska is about twelve
Alaska is about twelve times
Alaska is about twelve times larger
Alaska is about twelve times larger than
Alaska is about twelve times larger than New

Alaska is about twelve times larger than New York

Models tested ($n=43$)

Embedding type models: GloVe, word2vec, topicETM

Recurrent networks: skip-thoughts, LSTM Im_1b

Treating models as experimental subjects

stimulus

Beekeeping encourages the conservation of local habitats.

It is in every beekeeper's interest to conserve local plants that produce pollen.

tokenization

\square
-•••

Model units

similarity metric
neural predictivity

We want one model to predict all data

GloVe voxel-wise predictivity scores

\leftarrow GloVe

S1

S3
S4

S5
0

Certain language models predict human language recordings

GPT2-xl accurately predicts a large portion of voxels

Language Models predict human language recordings

Control: model scores across benchmarks are correlated, although differences exist

What explains the model differences?

Next-Word Prediction on WikiText-2

= Gold dollar =
The gold dollar or gold one @-@ dollar piece was a coin struck as a regular issue by the United States Bureau of the Mint from 1849 to 1889 . The coin had three types over its lifetime, all designed by Mint Chief Engraver James B. Longacre . The Type 1 issue had

WikiText-2

	Wikilext-2		
	Train	Valid	Test
Articles	600	60	60
Tokens	$2,088,628$	217,646	245,569
Vocab	33,278		
OoV	2.6%		

Alaska

Alaska is

Alaska is about
Alaska is about twelve
Alaska is about twelve times
Alaska is about twelve times larger
Alaska is about twelve times larger than
Alaska is about twelve times larger than New
Alaska is about twelve times larger than New York

The better models can predict the next word, the more brain-like they are

The better models can predict the next word, the more brain-like they are

5	

What about other language tasks?

子GLUE

9 "General Language Understanding Evaluation" tasks:

Sentence grammaticality (CoLa)
Sentence sentiment (SST-2)
Semantic similarity (QQP, MRPC, STS-B)
Entailment (MNLT, RTE)
Question-answer coherence (QNLI)
Winograd (WNLI; ignored due to known issues)

Next-Word Prediction performance selectively correlates with neural predictivity

Is any of this behaviorally relevant?

Is any of this behaviorally relevant?

Behavioral target: human reading times

The Natural Stories Corpus

Futrell et al. 2018

10256 words x 179 subjects
If | you | were | to | journey | to | the |
Richard Futrell ${ }^{1}$, Edward Gibson ${ }^{1}$, Harry J. Tily ${ }^{2}$, Idan Blank ${ }^{1}$, Anastasia Vishnevetsky ${ }^{1}$, Steven T. Piantadosi ${ }^{3}$, and Evelina Fedorenko ${ }^{4,5}$ ${ }^{1}$ MIT Department of Brain and Cognitive Sciences ${ }^{2}$ Netflix, Inc.
${ }^{3}$ University of Rochester Department of Brain and Cognitive Sciences ${ }^{4}$ Massachusetts General Hospital Department of Psychiatry
${ }^{5}$ Harvard Medical School Department of Psychiatry
\{futrell, egibson, iblank, evelina9\}@mit.edu,
hal.tily@gmail.com, staseyvi@mail.med.upenn.edu

Abstract

It is now a common practice to compare models of human language processing by comparing how well they predict behavioral and neural measures of processing difficulty, such as reading times, on corpora of rich naturalistic linguistic materials. However, many of these corpora, which are based on naturally-occurring text, do not contain many of the low-frequency syntactic constructions that are often required to distinguish between processing theories. Here we describe a new corpus consisting of English texts edited to contain often required to distinguish between processing theories. Here we describe a new corpus consisting of English texts edited to contain many low-frequency syntactic constructions while still sounding fluent to native speakers. The corpus is annotated with hand-corrected
 | to | a | valley | that | is | surrounded |
by | moors | as | high | as | mountains. | It | is | in | this | valley | where | you | would | find | the | city | of | Bradford, | where | once | a | thousand | spinning | ...

Treat reading times as representation target

Behavioral scores

Futrell2018

Neural scores correlate with Behavioral scores

Task scores correlate with Behavioral scores

Schrimpf et al. Neuron 2020

Behavioral

What is the relative importance of evolutionary and learning-based optimization?

Evolution \simeq community optimization over architectural properties

Experience-dependent learning \simeq updating of weights over training

Architecture substantially contributes to models' brain predictivity

LLMs align to the brain's language system after developmentally realistic amounts of training

We can use brain-aligned LLMs to noninvasively control neural activity

We can use brain-aligned LLMs to noninvasively control neural activity

Contributions

Particular LLMs are strong models of the human language system

Next-word prediction performance relates to brain and behavioral alignment

The best models can be used to noninvasively control neural activity

