Large Language Models Are Aligned With The Human Language System

@martin_schrimpf

Martin Schrimpf

PATT, Schools of Life Sciences, and of **Computer and Communication Sciences**

Neuro X Institute

Idan Blank Greta Tuckute Carina Kauf Eghbal Hosseini Josh Tenenbaum Ev Fedorenko Nancy Kanwisher

<u>Goal</u> (broadly): Model Natural (Human) Intelligence and the Underlying Neural Mechanisms

Goal (today): Model the Human Language System

Schrimpf et al. 2020, 2021

What kinds of models could align with the human language system?

In sensory cortex:

- Artificial Neural Networks (ANNs) are the leading class of models for explaining brain and behavior
- ANNs make predictions for any visual input and work well for real-world stimuli
- ANNs with higher task performance generally are more aligned to brain and behavior

Schrimpf*, Kubilius*, et al. 2018 | Kubilius*, Schrimpf*, et al. 2019

see also <u>www.brain-score.org</u> | Yamins*, Hong*, et al. 2013, 2014 | Khaligh-Razavi & Kriegeskorte 2014 | Zhuang et al. 2017 | Kell et al. 2018

Modeling higher cognition

Perception

Language

High-level reasoning

Artificial neural networks have worked well in modeling sensory cortex – could they also predict higher cognition?

The human language network

working definition:

a set of **left-lateralized** regions on the lateral surfaces of **frontal** and **temporal** cortex that support **high-level** language processing.

The human language network

Key signature: stronger response to sentences than lists of unconnected words

Fedorenko, Behr and Kanwisher 2011 | Fedorenko et al. 2020

The human language network

What are the mechanisms underlying human language comprehension?

What are the mechanisms underlying human language comprehension?

stimulus

Data target: human neural recordings

fMRI

Data target: human neural recordings

Pereira et al. 2018 fmri 🗐

627 sentences x 13,517 voxels in 10 subjects Beekeeping encourages the conservation of local habitats. | It is in every beekeeper's interest ...

Fedorenko et al. 2016

416 words x 97 electrodes in 5 subjects ALEX | WAS | TIRED | SO | HE | TOOK | A | NAP

Blank et al. 2014 fmri 🗐

1,317 story fragments x 60 fROIs in 5 subjects If you were to journey to the | North of England, you would come to a valley | that is surrounded by moors as high as | mountains. It is in this | valley where you would find the city of Bradford, | ...

accessible benchmarks

To test for this dissociation, here, we compared the blood Nonetheless MD systems oxygenation level-dependent (BOLD) signal time courses of ith a synergistic candidate language and MD regions by synergistically comdefine candidate bining two functional MRI (fMRI) methods: functional local-

Quantifying match-to-brain: Benchmarking

Quantifying match-to-brain: Benchmarking

Models tested (n=43)

Embedding type models: GloVe, word2vec, topicETM

Models tested (n=43)

Embedding type models: GloVe, word2vec, topicETM Ala

Recurrent networks: skip-thoughts, LSTM lm_1b

Language Modeling

Alaska <mark>is</mark>

Alaska is about

Alaska is about twelve

Alaska is about twelve times

Alaska is about twelve times larger

Alaska is about twelve times larger than

Alaska is about twelve times larger than New

Alaska is about twelve times larger than New York

Jozefowicz, vinyals, Schuster, Shazeer, Wu 2016

Image from https://www.quora.com/What-is-a-maskedlanguage-model-and-how-is-it-related-to-BERT

Models tested (n=43)

Embedding type models: GloVe, word2vec, topicETM

Recurrent networks: skip-thoughts, LSTM lm_1b

e.g. Pennington et al. 2014 | Jozefowicz et al. 2016 | Vaswani*, Shazeer*, Parmar*, Uszkoreit*, Jones*, Gomez*, Kaiser*, Polosukhin* 2017 | Devlin et al. 2018

Treating models as experimental subjects

Beekeeping encourages the conservation of local habitats.

It is in every beekeeper's interest to conserve local plants that produce pollen.

•••

...

...

Neural benchmarks

sentences

Model units

Neural benchmarks

Yamins*, Hong*, et al. (PNAS 2014)

Schrimpf*, Kubilius*, et al. (bioRxiv 2018)

GloVe voxel-wise predictivity scores

Certain language models predict human language recordings

GPT2-xl accurately predicts a large portion of voxels

Language Models predict human language recordings

Control: model scores across benchmarks are correlated, although differences exist

What explains the model differences?

Next-Word Prediction on WikiText-2

= Gold dollar =

. . .

The gold dollar or gold one @-@ dollar piece was a coin struck as a regular issue by the United States Bureau of the Mint from 1849 to 1889 . The coin had three types over its lifetime , all designed by Mint Chief Engraver James B. Longacre . The Type 1 issue had

	WikiText-2		
	Train	Valid	Test
Articles	600	60	60
Tokens	2,088,628	217,646	245,569
Vocab	33,278		
OoV	2.6%		

Alaska

Alaska <mark>is</mark>

Alaska is about

Alaska is about twelve

Alaska is about twelve times Alaska is about twelve times larger Alaska is about twelve times larger than

Alaska is about twelve times larger than New

Alaska is about twelve times larger than New York

Surprisal of seeing actual next word: **perplexity** = exp(NLL Loss)

afternoon | alaska | animation | article | ...

Merity et al. 2016

The better models can predict the next word, the more brain-like they are

The better models can predict the next word, the more brain-like they are

Schrimpf et al. (PNAS 2021)

What about other language tasks?

9 "General Language Understanding Evaluation" tasks:

Sentence grammaticality (CoLa) Sentence sentiment (SST-2) Semantic similarity (QQP, MRPC, STS-B) Entailment (MNLT, RTE) Question-answer coherence (QNLI) Winograd (WNLI; ignored due to known issues)

Next-Word Prediction performance **selectively** correlates with neural predictivity

Online prediction may fundamentally shape language processing in the brain Ongoing work: for high-performing models, reasoning capabilities (MMLU/BBH) also drive brain alignment (Aw et al. in prep)

Is any of this behaviorally relevant?

Is any of this behaviorally relevant?

Behavioral target: human reading times

Futrell et al. 2018

10256 words x 179 subjects

If | you | were | to | journey | to | the | North | of | England, | you | would | come Penn Treebank-style parse trees and includes the content of the corpus and release the data. | to | a | valley | that | is | surrounded | by | moors | as | high | as | mountains. | It | is | in | this | valley | where | you | would | find | the | city | of | Bradford, | where | once | a | thousand | spinning | ...

Treat reading times as representation target

The Natural Stories Corpus

Richard Futrell¹, Edward Gibson¹, Harry J. Tily², Idan Blank¹, Anastasia Vishnevetsky¹, Steven T. Piantadosi³, and Evelina Fedorenko^{4,5}

¹MIT Department of Brain and Cognitive Sciences ²Netflix, Inc. ³University of Rochester Department of Brain and Cognitive Sciences ⁴Massachusetts General Hospital Department of Psychiatry ⁵Harvard Medical School Department of Psychiatry

{futrell, eqibson, iblank, evelina9}@mit.edu, hal.tily@gmail.com,staseyvi@mail.med.upenn.edu

Abstract

It is now a common practice to compare models of human language processing by comparing how well they predict behavioral and neural measures of processing difficulty, such as reading times, on corpora of rich naturalistic linguistic materials. However, many of these corpora, which are based on naturally-occurring text, do not contain many of the low-frequency syntactic constructions that are often required to distinguish between processing theories. Here we describe a new corpus consisting of English texts edited to contain many low-frequency syntactic constructions while still sounding fluent to native speakers. The corpus is annotated with hand-corrected Penn Treebank-style parse trees and includes self-paced reading time data and aligned audio recordings. Here we give an overview of

Keywords: Cognitive modeling, reading time, psycholinguistics

Behavioral scores

Neural scores correlate with Behavioral scores

Task scores correlate with Behavioral scores

What is the relative importance of evolutionary and learning-based optimization?

Evolution \simeq community optimization over architectural properties

Experience-dependent learning \simeq updating of weights over training

Architecture substantially contributes to models' brain predictivity

LLMs align to the brain's language system after developmentally realistic amounts of training

Hosseini et al. 2022

We can use brain-aligned LLMs to noninvasively control neural activity

We can use brain-aligned LLMs to noninvasively control neural activity

Contributions

alignment

martin.schrimpf@epfl.ch

Particular LLMs are strong models of the human language system

Next-word prediction performance relates to brain and behavioral alignment

The best models can be used to noninvasively control neural activity

