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ABSTRACT

Despite recent progress in neurotechnology hardware for neural stimulation, pre-

cise behavioral control remains challenging. Part of the challenge stems from

complex interactions at the network level that make it difficult to link cellular

stimulation to behavior. At the same time, particular artificial neural networks

have recently been shown to accurately predict neural firing rates across the ven-

tral stream as well as image-by-image behavior. Here, we extend model-to-brain

mappings with a stimulation module that translates from micro-stimulation in pri-

mate brains to its neural and behavioral effects in silico. We demonstrate the

potential efficacy of this approach by reproducing psychometric shifts in face-

selective sites observed by Afraz et al. (2006). Finally, we argue that the stimu-

lation module can be used to efficiently determine the most effective stimulation

patterns while accounting for complex network interactions, and make predictions

on which changes to the neurotechnological hardware will be most impactful for

biasing behavior.

1 INTRODUCTION

In recent years, neurotechnological hardware for controlling spike rates in neural tissue has made

great progress with the rise of optogenetics (Bernstein and Boyden, 2011), more precise applications

of microstimulation (Salzman et al., 1992; Romo et al., 1998; Romo and Salinas, 1999; Afraz et al.,

2006; 2015), or inactivation techniques like pharmacological muscimol injections (Arikan et al.,

2002; Rajalingham and DiCarlo, 2019). In basic science, stimulation studies typically first carefully

map out neuronal tissue to locally preferred stimulus categories (Schalk et al., 2017; Afraz et al.,

2006) and then stimulate those locations in order to bias behavior in the direction of the stimulated
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location’s preferred category. Schalk et al. (2017) for example were able to evoke ”facephenes” by

stimulating the fusiform face area (FFA), following earlier efforts to find the anatomical location of

functional face processing (Kanwisher et al., 1997).

Precisely controlling behavior through neural stimulation on the other hand has remained elusive.

For instance, while we can evoke the general concept of a face, it is unclear how we would stim-

ulate for specific faces. In part, this is due to the difficulty of tightly linking the effects of neural

stimulation to behavioral responses. For instance, in optogenetics, even though tissue is meant to be

activated through excitations of cells, network-wide suppression effects can occur that, instead of

exciting the network, actually lead to reduced population activity, resulting in an inability to impact

behavior. These effects can be attributed to network effects (Jazayeri and Afraz, 2017; Dayan et al.,

2013) where complex interactions in the network lead to counter-intuitive behavior of the neural

population and as a result, counter-intuitive behavior of the organism as a whole.

As such, clinical applications are limited to applications of coarse neural stimulation. For instance,

Deep Brain Stimulation (DBS) statically applies coarse electric pulses in order to drive neural activ-

ity in the region the electrode is implanted in (Ashkan et al., 2017). Due to the coarse application of

stimulation, clinical applications have so far focused on diseases where stimulating relatively large

parts of a brain area leads to improved behavior, such as Parkinson, mood disorders, and epilepsy.

In these settings, increasing the activity of an area is sufficient to improve the patients’ behavior.

However, coarse stimulation techniques fall short when increasing an area’s activity is not sufficient

to cure behavioral deficits: for instance, deficits in the visual cortex can stem from lesions in visual

cortex (van Polanen and Davare, 2015) where part of an area, and thus its activity, are missing. In

this case, we would have to precisely reenact the activity of the damaged neurons which requires us

to account for the complex network effects described earlier.

To capture complex network effects, we here turn to artificial neural networks (ANNs) which cur-

rently constitute the most accurate predictive models of complex activity in the primate visual stream

and the object recognition behavior it supports. Specifically, evoked internal representations of spe-

cific ANNs are remarkably similar to evoked representations in V1, V2, V4, and inferior temporal

(IT) cortex (Yamins et al., 2014; Cadena et al., 2017; Schrimpf et al., 2018; 2019; Kar et al., 2019).

ANNs have further been shown to accurately predict primate behavior, to some extent even on an

image-by-image level (Rajalingham et al., 2018; Schrimpf et al., 2018). These evaluations are usu-

ally carried out by showing the ANN the same images as are shown to primates, and then comparing

whether e.g. the ANN’s predicted ITANN representations lie in the same linear subspace as recorded

IT representations ITrecording, i.e. whether a linear regression from ITANN to ITrecording can predict

held-out recordings. For behavior, the ANN’s response error patterns are compared to the error pat-
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Figure 1: Brain to model comparisons and the proposed stimulation intervention. Artificial
Neural Networks make predictions on evoked firing rates and behavior which have been shown
to correspond well to neural recordings and behavioral measurements in primates. We here aim
to extend this approach with a stimulation module (red lightning) that can be added onto existing
models.

terns by human subjects (see Figure 1 for an overview). Recently, ANNs have also been applied in

a neurotechnology context, where neural populations are non-invasively controlled by synthesized

images that are generated through the model (Bashivan et al., 2019).

Here, we leverage artificial neural networks in order to simulate in silico the behavioral effects of

neural stimulation in vivo. In particular, we propose a stimulation module that can be added onto

any model that makes predictions on neurons and behavior, and demonstrate its usefulness by re-

producing psychometric shift effects following stimulation observed by Afraz et al. (2006). We then

go beyond the data and simulate many different stimulation patterns for which the model predicts

strong behavioral effects. If correct, these precise stimulation patterns would yield much more effi-

cient biasing of behavior that goes beyond the effects from the coarsely chosen stimulation patterns

used so far. Since we have full control over the stimulation module, we can also evaluate the impact

of potential future neurotechnological hardware. For the specific task of biasing face responses in

IT, we determine that the activation of local, isolated sites together with a stronger excitation of neu-

ral firing rates, would lead to the greatest ability of biasing behavioral responses. These predictions

might help guide neuroscience tool development in a direction that is most impactful for stimulated

behavioral effects. On the other hand, model predictions might very well turn out to be incorrect

in which case this specific model (specific ANN + specific stimulation module) have been falsified,

and need to be updated – a step that leads to progress in obtaining better and better models.
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2 TRANSLATING MODEL ACTIVATIONS TO ON-TISSUE FIRING RATES

We start with ”CORnet-Z”, an anatomically mapped model of brain processing in the ventral stream,

with weights pre-trained on ImageNet (Kubilius et al., 2018). In order to tie the predictions of neural

firing rates in IT to physical tissue, we use Utah array recordings from Majaj et al. (2015): the

model is shown the same 2,560 stimuli that evoked the monkeys’ neural firing rates y, we ”record”

the model’s IT representations x, and construct a linear transformation that maps from model to

monkey representations,

y = Wx (1)

where W denotes linear regression weights learned with PLS regression. Notably, since the monkey

IT recordings stem from an electrode array implanted in physical tissue, predicted firing rates ŷ are

grounded in a tissue map where each site has neighbors in a 2D space along the Utah electrode array.

After this initial mapping step, we can now simulate IT firing rates using the model and the linear

transformation, without relying on costly monkey recordings.

3 GAUSSIAN-SCALED ADDITIVE STIMULATION

After obtaining a tissue-mapped predictive model of firing rates, we here outline the stimulation

module that models the effects of stimulation on the model. Previous literature has started to uncover

the effects of microstimulation on the neural sites themselves: largely, responses seem to be driven

most at the center of stimulation, with an increasing falloff as the distance from the center increases

(Tolias et al., 2005; Lee et al., 2014). Here, we model this effect with an additive 2D Gaussian

that is positioned at the center of stimulation, parametrized by its covariance σ2. The second free

parameter is the scaling multiplier λ that translates from e.g. 50 mA microstimulation to an additive

firing rate at the center of the Gaussian. The full effect of the stimulation module on firing rates ŷ at

a position pos is thus

ŷ′pos = ŷ + λ×N (pos|µ, σ2) (2)

where µ is the 2D center of stimulation in coordinates of the Utah array (see Figure 3 (left) for an

example).

Note that a potential confound in this modeling choice is that nearby neurons in the original record-

ings could have only gotten activated due to lateral connections from the stimulated neuron itself.

However, since the model used in this study does not capture these lateral connections, the spatial

spread of stimulation might compensate for that shortcoming.
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4 REPRODUCING PSYCHOMETRIC SHIFTS FOLLOWING STIMULATION IN

FACE-SELECTIVE SITES

In the following, we attempt to reproduce behavioral effects following microstimulation, observed

by Afraz et al. (2006). Specifically, we aim to reproduce, in the model, 1) a behavioral shift to-

wards more likely responding ”face” over ”no face” when stimulated; and 2) the stimulation of face-

selective sites leading to a stronger psychometric shift compared to sites that are not face-selective

(see Figure 2).

Figure 2: Main findings by Afraz et al. (2006). (left, bottom) Macaque monkeys are presented
with face and non-face images with varying amounts of noise in a face categorization task. (left,
top) Sample effect of stimulation on behavioral responses. Compared to no stimulation (blue line),
stimulation during 50-100 ms (red line) leads to a shift in behavioral responses towards faces. (right)
When stimulating sites that are more face-selective, the elicited psychometric shift is pushed more
towards faces compared to sites that are not face-selective.

Since we don’t have access to the original stimuli, we synthesized our own: for the face images, we

randomly select 500 images from the labeled-faces-in-the-wild dataset (Huang et al., 2012). For the

non-face images, we chose 6 Imagenet (Deng et al., 2009) categories that roughly follow the data

description by Afraz et al. (2006) (folding chair, pineapple, hen, sea cucumber, car wheel, mountain

bike) from which we randomly select 500 images. For each of the total 1,000 images, we then

randomly choose a noise level between 0 − 100% and distort the image with random gray-scale

values between 0− 255.

To connect neurons to the task of face/no-face discrimination in Afraz et al. (2006), we train a binary

logistic decoder that, based on the IT representations ŷ, distinguishes images into ”face” and ”no

face”. We train the decoder on 500 randomly selected images and perform all further testing on the

held-out 500 images. Using this training procedure, we are able to reproduce the baseline behavioral

response (Figure 2, left, blue curve) in the model (Figure 3, middle, blue curve).
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Figure 3: Model stimulation qualitatively reproduces behavioral effects. (left) Spatial applica-
tion of a model stimulation (orange blob, covariance σ2 = 0.1) to the location on a Utah array (red
dots). (middle) Sample effect of stimulation on behavioral responses. Compared to no stimulation
(blue line), stimulation (red line) leads to a shift in behavioral responses towards faces. (right) Face-
selective sites lead to a stronger bias in behavioral responses towards faces than sites that are not
face-selective.

We instantiate our in-silico stimulation module with a spatial coverage of σ2 = 0.1 and a mA

translation of λ = 0.01. In each experiment, we randomly choose a neural site, center the Gaussian

stimulation on that point and add a spatially scaled stimulation vector to the IT firing rates ŷ as

described in Section 3. In the stimulation case, the decoder then receives the stimulated IT responses

ŷ′ which lead to changes in the model’s behavior. Figure 3 (middle, red curve) shows how for

a sample site in the model, we can reproduce the behavioral shift of the psychometric function

towards faces (compare with Figure 2, left, red curve). Aggregating across all the sites, we find a

similar effect to what Afraz et al. (2006) reported: sites that are more face-selective lead to a greater

behavioral bias towards faces than sites that are not face-selective. Note that overall, less of the sites

here are face-selective which most likely stems from the dataset we used (Majaj et al., 2015) not

being collected with face-selectivity in mind.

5 PREDICTIONS OUTSIDE THE DATA

On top of capturing existing effects, we can also further simulate the in-silico model and quickly

explore the impact of possible experiments. One central promise of computational models of the

brain that capture complex interactions is to precisely predict behavioral effects. In the case of

stimulation, this would entail using the model to find precise stimulation patterns that maximally

push behavior in the desired direction, where simpler models (e.g. word models) fail to precisely

capture the complex interactions from neurons to behavior. For instance, in optogenetics, despite

activating part of the neurons, overall network suppression effects can occur that are not captured by

simple mechanic explanations (Jazayeri and Afraz, 2017), but could be predicted by computational

models. Figure 4 outlines this upshot of using computational models: first, strong models should

make more precise predictions on experimental outcomes and second, they are likely to be more

efficient (Yamins and DiCarlo, 2016) in finding stimulation patterns that maximally drive behavior.
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Figure 4: Potential stronger behavioral control through model-driven stimulation. (left)
Sketched hypotheses of how an efficient, and more precise model of network interactions increases
behavioral control compared to an imprecise model lacking complex network interactions. (right)
Sample sites that the model predicts to lead to stronger behavioral bias towards faces.

The two major reasons for this efficiency gain are the ability to execute the in-silico model much

more quickly than an animal model, and the transparency of the in-silico system which allows to

backtrack changes through the entire model (Bashivan et al., 2019). Given the model’s predictive

power and efficiency, we can easily query it for stimulation patterns that would e.g. bias primates to

faces altogether.

On top of utilizing the model for determining the most impactful stimulation patterns, we can also

play out the effect of different changes to neurotechnology hardware. Recall for instance that the

stimulation’s spatial coverage σ2 and the scaling multiplier λ mapping onto firing rates have been

chosen to match the Afraz et al. (2006) paper. We can change these parameters in order to gauge

how e.g. more spatially isolated microstimulation hardware would impact behavior.

Figure 5 illustrates this analysis: each subplot shows the psychometric shift when stimulating sites

of varying face-selectivity (same notation as in Figure 3, right), the columns denote increasing spa-

tial coverage, and the rows increasing excitation of firing rates. The circled subplot reflects the

parameter choices that best mapped onto Afraz et al. (2006). In this analysis of different parameter

combinations, the neurotechnology hardware to most strongly allow pushing behavior maximally

apart between face and non-face responses, would stimulate only local isolated sites and drive those
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Figure 5: Predictions on neurotechnology hardware. Model simulation suggests that neurotech-
nological hardware that stimulates units in an isolated manner, and with stronger excitation of firing
rates, will be able to maximally tease face/non-face responses apart.

sites’ firing rates very high. These are however very preliminary results with many assumptions:

the model and stimulation module have only been tested qualitatively on a single experimental

paradigm, despite isolated spatial stimulation local interactions could still distort the signal, and

firing rates cannot be driven infinitely high.

6 NEXT STEPS

All of these prototypical analysis are meant to show-case the potential benefits of an in-silico stimu-

lation model onto neurotechnology hardware. I am personally hoping to use these initial experiments

as a stepping stone for in-vivo experiments in macaques. By having control over both recordings and

stimulation, I could optimize mapping parameters (such as stimulation coverage σ2 and excitation

multiplier λ) for the animal model they will later be used on, and test model predictions in the loop.

A first step might be to capture the effects of e.g. V4 microstimulation on IT recordings, before

making the larger leap to precise behavioral control. For behavior, the grand goal would be to pre-

dictably control visual perception and strongly bias behavioral responses. For instance, a monkey
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would look at a blank screen, we would query the model and ask how we should stimulate IT in

order to yield a certain behavioral response of e.g. a dog in a match-to-sample task, then conduct

that stimulation on the monkey, record the monkey’s response, and evaluate whether the stimulation

led to the desired behavior.

In the long run, another hope is to apply efficient model-driven stimulation in a clinical setting to

tackle certain psychiatric diseases. For instance, patients with ventral stream lesions could have a

stimulation implant reenacting the activity that is missing due to the lesion. If inducing behavioral

percepts should work out, this approach could be expanded to other perceptual domains, and perhaps

even to cognitive ones such as language understanding. On top of that, after detecting schizophrenic

delusions, we could potentially even use this tool to create stimulation patterns that undo the delu-

sional episode. Since the model can predict perception from neural activity, we can find a neural

activity pattern that would reset perception back to normal. Through the stimulation module pro-

posed here, we could then apply the computationally determined stimulation pattern to the patient

which – given a correct model – would undo the delusion. Since the stimulation module is only

an add-on onto a computational brain model, there could further be different instantiations of stim-

ulation such as an optogenetic module, or a magnetic-stimulation module (Chen et al., 2015). In

principle, the approach would also work across species, given a computational model of the species’

brain processing.

All of these experiments would exemplify causal control over the brain through a computational

simulation of the brain. Without the in-silico model, we would have to semi-randomly search for

the right stimulation pattern directly in-vivo which is much less efficient. The simulated model

stimulation allows us to quickly determine the stimulation pattern that is most likely to elicit the

desired behavioral effect.
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